#include #include #include "grab_occlusion.h" #include "utils.h" namespace graft_cv { CStemResultInfos::CStemResultInfos(double seedling_dist, int holes_number, double x_min, double x_max, double z_min, double z_max, std::string pcd_id, CGcvLogger*pLog) : m_pLogger(pLog) , m_seedling_dist(seedling_dist) , m_holes_number(holes_number) , m_xmin(x_min) , m_xmax(x_max) , m_zmin(z_min) , m_zmax(z_max) //, m_append_counter(0) , m_pcdId(pcd_id) , m_max_size(50) { gen_root_centers(); } CStemResultInfos::~CStemResultInfos() {} void CStemResultInfos::append( CStemResult& sr ) { m_infos.insert(m_infos.begin(), sr); if (m_infos.size() > m_max_size) { m_infos.pop_back(); } //m_append_counter += 1; //每次都更新 _update_root_centers(sr); //if (m_append_counter % 10 == 0) { // //定期写入数据 // _update_root_centers(); // write_root_centers(m_json_filename); //} } void CStemResultInfos::clear() { m_infos.clear(); } void CStemResultInfos::get_root_centers( std::vector&rst ) { rst.clear(); for (auto& sr : m_root_centers) { rst.push_back(sr); } } void CStemResultInfos::_update_root_centers(CStemResult& sr) { //直接在m_root_centers中找到最接近的中心,如果小于指定距离,更新m_root_centers double d1 = m_seedling_dist / 4.0; double d_min = 1.0e6; int min_root_idx = -1; for (int i = 0; i < m_root_centers.size(); ++i) { double dist = m_root_centers.at(i).calcluate_distance(sr); if (dist < d_min) { d_min = dist; min_root_idx = i; } } if (d_min < d1 && min_root_idx >= 0) { //更新指定中心 double mu_x, mu_y, mu_z; CStemResult& min_root = m_root_centers.at(min_root_idx); mu_x = min_root.root_x; if (min_root.root_count == 0) { mu_y = sr.root_y; mu_z = sr.root_z; } else { mu_y = (min_root.root_y * min_root.root_count + sr.root_y * sr.root_count) / (double)(min_root.root_count + sr.root_count); mu_z = (min_root.root_z * min_root.root_count + sr.root_z * sr.root_count) / (double)(min_root.root_count + sr.root_count); } min_root.root_x = mu_x; min_root.root_y = mu_y; min_root.root_z = mu_z; min_root.root_count += sr.root_count; } } void CStemResultInfos::gen_root_centers() { //根据 m_seedling_dist, m_holes_number, m_xmin, m_xmax生成初始的穴位中心 //以m_xmin, m_xmax的中间点为中心,分别找到间隔m_seedling_dist的m_holes_number个穴位中心 //初始的z设成-1,等待更新赋值 double x_mid = 0.5 * (m_xmin + m_xmax); double holes_mid = 0.5 * (m_holes_number - 1) * m_seedling_dist; double x0 = x_mid - holes_mid; double z_mid = 0.5 * (m_zmin + m_zmax); m_root_centers.clear(); for (int i=0; i&cx) { m_center_x.clear(); for (auto&x : cx) { m_center_x.push_back(x); } std::sort(m_center_x.begin(), m_center_x.end()); double seedling_distance = m_center_x.at(1) - m_center_x.at(0); m_idx_low.clear(); m_idx_up.clear(); for (int i = 0; i < m_center_x.size(); ++i) { int idx_low = int((m_center_x.at(i) - 0.5 * seedling_distance - m_xmin) / m_bin_step); int idx_up = int((m_center_x.at(i) + 0.5 * seedling_distance - m_xmin) / m_bin_step); m_idx_low.push_back(idx_low); m_idx_up.push_back(idx_up); } m_history_status = cv::Mat::zeros(m_max_size, m_center_x.size(), CV_8U); } void CSeedlingStatus::append_hist( std::vector&xhist, //input std::vector&xstatus //output ) { assert(xhist.size() == m_hist_length); m_global_cursor++; if (m_record_cursor < m_max_size-1) { m_record_cursor++; float pc_size = 0.0; for (int i = 0; i < xhist.size(); ++i) { if (i >= m_hist_length) { continue; } m_history_histogram.at(m_record_cursor,i) = xhist.at(i); pc_size += xhist.at(i); } m_history_point_size.at(m_record_cursor, 0) = pc_size; get_status(xstatus); } else { //数据上移一行,数据放在最后一行 for (int row = 0; row < m_history_histogram.rows - 1; ++row) { for (int col = 0; col < m_history_histogram.cols; ++col) { m_history_histogram.at(row, col) = m_history_histogram.at(row + 1, col); } } for (int row = 0; row < m_history_point_size.rows - 1; ++row) { m_history_point_size.at(row, 0) = m_history_point_size.at(row+1, 0); } /*memcpy_s(m_history_histogram.data, m_history_histogram.step[0] * (m_max_size - 1), m_history_histogram.data + m_history_histogram.step[0], m_history_histogram.step[0] * (m_max_size - 1));*/ /*memcpy_s(m_history_point_size.data, m_history_point_size.step[0] * (m_max_size - 1), m_history_point_size.data + m_history_point_size.step[0], m_history_point_size.step[0] * (m_max_size - 1));*/ float pc_size = 0.0; for (int i = 0; i < xhist.size(); ++i) { m_history_histogram.at(m_history_histogram.rows - 1, i) = float(xhist.at(i)); pc_size += xhist.at(i); } m_history_point_size.at(m_history_point_size.rows - 1, 0) = pc_size; get_status(xstatus); } } void CSeedlingStatus::get_status(std::vector&xstatus) { xstatus.clear(); xstatus.assign(m_center_x.size(), false); //1 如果没有记录输入,返回没有苗 if (m_record_cursor < 0) { return; } //2 如果是第一次,没有参考,用自身的分布阈值判断是否有苗(可能不准确,但没有其他办法) //点云分布情况分析 // 每个bin的数量阈值设定m_bin_step宽度,至少有10毫米的点云,才认为有苗 float th_hist = m_bin_step * 10 / m_pc_mean_dist / m_pc_mean_dist; if (m_record_cursor == 0) { std::vector hist_status; hist_status.assign(m_hist_length, false); for (int i = 0; i < m_hist_length; ++i) { if (m_history_histogram.at(m_record_cursor, i) > th_hist) { hist_status.at(i) = true; } } for (int i = 0; i < m_center_x.size(); ++i) { int idx_low = m_idx_low.at(i); int idx_up = m_idx_up.at(i); int valid_bin_cnt = 0; for (int k = idx_low; k < idx_up; ++k) { if (hist_status.at(k)) { valid_bin_cnt++; } } double valid_ratio = (double)valid_bin_cnt / (double)(idx_up - idx_low); xstatus.at(i) = valid_ratio > 0.5; } //update m_history_status for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_record_cursor, i) = xstatus.at(i); } return; } //3 2次或更多,通过前后2次差分析苗取走的情况 //3.1 计算被取走的点云位置分布 std::vectorhist_diff; hist_diff.assign(m_hist_length, 0.0); float sum_dn = 0.0; float sum_n = 0.0; float diff_cnt = 0.0; for (int i = 0; i < m_hist_length; ++i) { diff_cnt = m_history_histogram.at(m_record_cursor - 1, i) - m_history_histogram.at(m_record_cursor, i); hist_diff.at(i) = diff_cnt; sum_n += diff_cnt; sum_dn += diff_cnt * i; } /*if (m_record_cursor < m_max_size) { for (int i = 0; i < m_hist_length; ++i) { diff_cnt = m_history_histogram.at(m_record_cursor - 1, i) - m_history_histogram.at(m_record_cursor, i); hist_diff.at(i) = diff_cnt; sum_n += diff_cnt; sum_dn += diff_cnt * i; } } else { for (int i = 0; i < m_hist_length; ++i) { diff_cnt = m_history_histogram.at(m_max_size - 2, i) - m_history_histogram.at(m_max_size - 1, i); hist_diff.at(i) = diff_cnt; sum_n += diff_cnt; sum_dn += diff_cnt * i; } }*/ //3.2 统计增减点云的状态,区分点云增加,点云减小,点云没变化的部分 std::vector hist_status_2d; //3种状态记录: -1取走,0没变化,1上苗 hist_status_2d.assign(m_hist_length, 0); int add_cnt = 0; int sub_cnt = 0; for (int i = 0; i < m_hist_length; ++i) { if (hist_diff.at(i) > th_hist) { hist_status_2d.at(i) = -1; sub_cnt += 1; } if (hist_diff.at(i) < -th_hist) { hist_status_2d.at(i) = 1; add_cnt += 1; } } //3.3 判断苗的整体情况 double seedling_distance = m_center_x.at(1) - m_center_x.at(0); //株间距离 double grid_one_seedling = seedling_distance / m_bin_step; //每穴位占histogram的桶数 //3.3.1进一排苗 if (add_cnt > grid_one_seedling*3.0) { xstatus.assign(m_center_x.size(), true); //update m_history_status if (m_record_cursor == m_global_cursor) { if (m_record_cursor < m_max_size) { for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_record_cursor, i) = xstatus.at(i); } } else { } } else { //数据上移一行,数据放在最后一行 for (int row = 0; row < m_history_status.rows - 1; ++row) { for (int col = 0; col < m_history_status.cols; ++col) { m_history_status.at(row, col) = m_history_status.at(row + 1, col); } } /*memcpy_s(m_history_status.data, m_history_status.step[0] * (m_max_size - 1), m_history_status.data + m_history_status.step[0], m_history_status.step[0] * (m_max_size - 1)); */ for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_max_size-1, i) = xstatus.at(i); } } return; } std::vectorsorted_idx; std::vectorsub_seedling_score; //移出植株得分,记录每个穴位上点云变化得分 //3.3.2 变化很小,说明没有改变(没能成功抓走) if (add_cnt + sub_cnt < 0.5 * grid_one_seedling) { goto no_change; } //3.3.3 否则的话,就是抓走过一个苗 //找到被取走的苗的中心,然后根据dtype确定有苗的位置 //找覆盖范围最大的区域 double sub_cent_indx = sum_dn / sum_n; //计算改变范围的中心,目前没用到 sub_seedling_score.assign(m_center_x.size(), 0.0); for (int idx = 0; idx < hist_status_2d.size(); ++idx) { if (hist_status_2d.at(idx) >= 0) { //这个histogram上没有移出,不统计, hist_status_2d的值域:-1取走,0没变化,1上苗 continue; } for (int i = 0; i < m_center_x.size(); ++i) { int idx_low = m_idx_low.at(i); int idx_up = m_idx_up.at(i); if (idx >= idx_low && idx < idx_up) { sub_seedling_score.at(i) += 1.0; } } } int sub_pos = -1; sorted_idx = sort_indexes_e(sub_seedling_score, false); for (auto& idx : sorted_idx) { if (sub_seedling_score.at(idx) < 0.25 * grid_one_seedling) { //如果改变量,不到穴位范围的一半,不认为是移走的 continue; } if (m_history_status.at(m_record_cursor - 1, idx) == 0) { //如果这个位置上一帧就没有苗,那判别也是错误的 continue; } sub_pos = idx; break;//找到得分最高,并且满足条件的位置,就是被抓走的位置,跳出 } if (sub_pos >= 0) { xstatus.assign(m_center_x.size(), false); int cursor = m_record_cursor-1; for (int i = 0; i < m_history_status.cols; ++i) { if (m_history_status.at(cursor, i) == 1) { xstatus.at(i) = true; } } xstatus.at(sub_pos) = false; //update m_history_status if (m_record_cursor == m_global_cursor) { for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_record_cursor, i) = xstatus.at(i); } } else{ //数据上移一行,数据放在最后一行 for (int row = 0; row < m_history_status.rows - 1; ++row) { for (int col = 0; col < m_history_status.cols; ++col) { m_history_status.at(row, col) = m_history_status.at(row + 1, col); } } /*memcpy_s(m_history_status.data, m_history_status.step[0] * (m_max_size - 1), m_history_status.data + m_history_status.step[0], m_history_status.step[0] * (m_max_size - 1));*/ for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_max_size - 1, i) = xstatus.at(i); } } return; } else { //如果没有找到有效位置,按没有变化处理 goto no_change; } no_change: //没有改变,用上一次的结果 xstatus.assign(m_center_x.size(), true); //update m_history_status if (m_record_cursor == m_global_cursor) { for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_record_cursor, i) = m_history_status.at(m_record_cursor - 1, i); if (m_history_status.at(m_record_cursor - 1, i) == 0) { xstatus.at(i) = false; } } } else{ //数据上移一行,数据放在最后一行 for (int row = 0; row < m_history_status.rows - 1; ++row) { for (int col = 0; col < m_history_status.cols; ++col) { m_history_status.at(row, col) = m_history_status.at(row + 1, col); } } /*memcpy_s(m_history_status.data, m_history_status.step[0] * (m_max_size - 1), m_history_status.data + m_history_status.step[0], m_history_status.step[0] * (m_max_size - 1));*/ for (int i = 0; i < m_history_status.cols; ++i) { m_history_status.at(m_max_size - 1, i) = m_history_status.at(m_max_size - 2, i); if (m_history_status.at(m_max_size - 2, i) == 0) { xstatus.at(i) = false; } } } } }