#include #include #include "grab_occlusion.h" namespace graft_cv { CStemResultInfos::CStemResultInfos(double seedling_dist, int holes_number, double x_min, double x_max, double z_min, double z_max, std::string pcd_id, CGcvLogger*pLog) : m_pLogger(pLog) , m_seedling_dist(seedling_dist) , m_holes_number(holes_number) , m_xmin(x_min) , m_xmax(x_max) , m_zmin(z_min) , m_zmax(z_max) //, m_append_counter(0) , m_pcdId(pcd_id) , m_max_size(50) { gen_root_centers(); } CStemResultInfos::~CStemResultInfos() {} void CStemResultInfos::append( CStemResult& sr ) { m_infos.insert(m_infos.begin(), sr); if (m_infos.size() > m_max_size) { m_infos.pop_back(); } //m_append_counter += 1; //每次都更新 _update_root_centers(sr); //if (m_append_counter % 10 == 0) { // //定期写入数据 // _update_root_centers(); // write_root_centers(m_json_filename); //} } void CStemResultInfos::clear() { m_infos.clear(); } void CStemResultInfos::get_root_centers( std::vector&rst ) { rst.clear(); for (auto& sr : m_root_centers) { rst.push_back(sr); } } void CStemResultInfos::_update_root_centers(CStemResult& sr) { //直接在m_root_centers中找到最接近的中心,如果小于指定距离,更新m_root_centers double d1 = m_seedling_dist / 4.0; double d_min = 1.0e6; int min_root_idx = -1; for (int i = 0; i < m_root_centers.size(); ++i) { double dist = m_root_centers.at(i).calcluate_distance(sr); if (dist < d_min) { d_min = dist; min_root_idx = i; } } if (d_min < d1 && min_root_idx >= 0) { //更新指定中心 double mu_x, mu_y, mu_z; CStemResult& min_root = m_root_centers.at(min_root_idx); mu_x = min_root.root_x; if (min_root.root_count == 0) { mu_y = sr.root_y; mu_z = sr.root_z; } else { mu_y = (min_root.root_y * min_root.root_count + sr.root_y * sr.root_count) / (double)(min_root.root_count + sr.root_count); mu_z = (min_root.root_z * min_root.root_count + sr.root_z * sr.root_count) / (double)(min_root.root_count + sr.root_count); } min_root.root_x = mu_x; min_root.root_y = mu_y; min_root.root_z = mu_z; min_root.root_count += sr.root_count; } } //void CStemResultInfos::_update_root_centers() { // //依据m_infos中的数据,苗间距m_seedling_dist,聚类生成茎的平均位置,茎的点云平均数量 // //更新m_root_centers // //以root_center为基础进行聚类,如果root_center是空的,因当前数据进行聚类 // std::vector root_centers; // double d1 = m_seedling_dist / 2.0; // double d2 = d1*1.75; // pcl::PointCloud::Ptr cloud2d_pos(new pcl::PointCloud < pcl::PointXYZ>); // for (auto&sr : m_infos) { // cloud2d_pos->points.push_back(pcl::PointXYZ((float)sr.root_x, 0.0, (float)sr.root_z)); // } // cloud2d_pos->width = cloud2d_pos->points.size(); // std::vectorcluster_center; // std::vector> cluster_member; // euclidean_clustering_ttsas(cloud2d_pos, d1, d2, cluster_center, cluster_member); // for (size_t i = 0; i < cluster_center.size(); ++i) { // double x = (double)cluster_center.at(i).x; // double y = (double)cluster_center.at(i).y; // double z = (double)cluster_center.at(i).z; // int count = (int)cluster_member.at(i).size(); // int pc_size = 0.0; // for (auto& idx : cluster_member.at(i)) { // pc_size += m_infos.at(idx).stem_size; // } // pc_size = (int)(pc_size / (float)count); // CStemResult sr = CStemResult(x, y, z, pc_size, std::string(""), count); // root_centers.push_back(sr); // } // if (m_root_centers.size() == 0) { // //如果没有历史数据,直接赋值 // m_root_centers = root_centers; // } // else { // if (m_infos.size() > 50) { // //如果当前数据量较大,用当前的结果 // m_root_centers = root_centers; // } // else { // //否则将当前结果合并到m_root_centers // //m_root_centers // for (auto& cent : root_centers) { // double dist_min = d2; // int min_root_idx = 0; // for (int j = 0; j < m_root_centers.size();++j) { // CStemResult& root = m_root_centers.at(j); // double dist = root.calcluate_distance(cent); // if (dist < dist_min) { // dist_min = dist; // min_root_idx = j; // } // } // if (dist_min < d1) { // //merge // double mu_x, mu_y,mu_z; // CStemResult& min_root = m_root_centers.at(min_root_idx); // mu_x = (min_root.root_x * min_root.root_count + // cent.root_x * cent.root_count) / (double)(min_root.root_count + cent.root_count); // mu_y = (min_root.root_y * min_root.root_count + // cent.root_y * cent.root_count) / (double)(min_root.root_count + cent.root_count); // mu_z = (min_root.root_z * min_root.root_count + // cent.root_z * cent.root_count) / (double)(min_root.root_count + cent.root_count); // min_root.root_x = mu_x; // min_root.root_y = mu_y; // min_root.root_z = mu_z; // min_root.root_count += cent.root_count; // } // else { // //add root // m_root_centers.push_back(cent); // } // } // } // } // //m_root_centers 排序、剔除 // std::sort(m_root_centers.begin(), m_root_centers.end(), // [](const CStemResult& sr1, const CStemResult& sr2) {return sr1.root_x < sr2.root_x; }); // //nms // _filter_root_centers(d1, d2); //} //void CStemResultInfos::_filter_root_centers(double d1, double d2) //{ // //对生成的根中心m_root_centers进行过滤,剔除异常 // //1 z值,通过中值,距离中值远的剔除 // if (m_root_centers.size() > 3) { // std::vectorroot_z; // for (auto&rc : m_root_centers) { // root_z.push_back(rc.root_z); // } // std::sort(root_z.begin(), root_z.end()); // double mid_z = 0.0; // if (root_z.size() % 2 == 1) { // int idx = (m_root_centers.size() - 1) / 2; // mid_z = root_z.at(idx); // } // else { // int idx = root_z.size() / 2; // mid_z = 0.5 * (root_z.at(idx) + root_z.at(idx - 1)); // } // std::vector valid_root_centers; // for (auto&rc : m_root_centers) { // if (fabs(rc.root_z - mid_z) < d2) { // valid_root_centers.push_back(rc); // } // } // m_root_centers = valid_root_centers; // } // //2 按x做分组,排除权重小的 // if (m_root_centers.size() > 3) { // std::vector center_dist; // for (int i = 0; i < m_root_centers.size(); ++i) { // double x = m_root_centers.at(i).root_x; // double mod_sum = 0.0; // for (int j = 0; j < m_root_centers.size(); ++j) { // double dist = fabs(m_root_centers.at(j).root_x - x); // double mod = fmod(dist, m_seedling_dist); // double mod_inv = m_seedling_dist - mod; // mod = min(mod, mod_inv); // mod_sum += mod; // } // mod_sum /= (m_root_centers.size() - 1); // center_dist.push_back(mod_sum); // } // std::vector valid_root_centers; // for (int i = 0; i < center_dist.size(); ++i) { // double dist = center_dist.at(i); // if (dist < d1) { // valid_root_centers.push_back(m_root_centers.at(i)); // } // } // m_root_centers = valid_root_centers; // } // //3 数量少的剔除 // int total_count = 0; // for (auto&rc : m_root_centers) { // total_count += rc.root_count; // } // if (total_count > 50) { // bool need_del = false; // for (auto& rc : m_root_centers) { // if (rc.root_count <= 2) { // need_del = true; // break; // } // } // if (need_del) { // std::vector valid_root_centers; // for (int i = 0; i < m_root_centers.size(); ++i) { // if (m_root_centers.at(i).root_count > 2) { // valid_root_centers.push_back(m_root_centers.at(i)); // } // } // m_root_centers = valid_root_centers; // } // // } //} void CStemResultInfos::gen_root_centers() { //根据 m_seedling_dist, m_holes_number, m_xmin, m_xmax生成初始的穴位中心 //以m_xmin, m_xmax的中间点为中心,分别找到间隔m_seedling_dist的m_holes_number个穴位中心 //初始的z设成-1,等待更新赋值 double x_mid = 0.5 * (m_xmin + m_xmax); double holes_mid = 0.5 * (m_holes_number - 1) * m_seedling_dist; double x0 = x_mid - holes_mid; double z_mid = 0.5 * (m_zmin + m_zmax); m_root_centers.clear(); for (int i=0; iINFO(buff.str()); // } // return; // } // cv::FileStorage fs(filename, cv::FileStorage::READ); // cv::FileNode root_centers = fs["root_centers"]; // cv::FileNodeIterator it = root_centers.begin(), it_end = root_centers.end(); // m_root_centers.clear(); // for (; it != it_end; ++it) { // double x = (double)(*it)["x"]; // double y = (double)(*it)["y"]; // double z = (double)(*it)["z"]; // int size = (int)(*it)["size"]; // std::string bid = (std::string)(*it)["batch_id"]; // int count = (int)(*it)["count"]; // CStemResult sr = CStemResult(x,y,z,size, bid, count); // m_root_centers.push_back(sr); // } // fs.release(); //} //void CStemResultInfos::write_root_centers( // std::string& filename //) //{ // cv::FileStorage fs(filename, cv::FileStorage::WRITE); // fs << "root_centers" << "["; // for (auto& sr : m_root_centers) { // fs << "{" << "x" << sr.root_x // << "y" << sr.root_y // << "z" << sr.root_z // << "size" << sr.stem_size // << "batch_id" << sr.batch_id // << "count" << sr.root_count // << "}"; // } // fs << "]"; // fs.release(); //} //void CStemResultInfos::euclidean_clustering_ttsas( // pcl::PointCloud::Ptr in_cloud, // double d1, double d2, // std::vector&cluster_center, // std::vector> &clustr_member //) //{ // if (m_pLogger) { // stringstream buff; // buff << m_pcdId << ": root center estimate: euclidean_clustering_ttsas() begin..."; // m_pLogger->INFO(buff.str()); // } // std::vector cluster_weight; // std::vector data_stat; // std::vectorcluster_center_raw; // std::vector> clustr_member_raw; // for (size_t i = 0; i < in_cloud->points.size(); ++i) { data_stat.push_back(0); } // size_t data_len = in_cloud->points.size(); // int exists_change = 0; // int prev_change = 0; // int cur_change = 0; // int m = 0; // while (std::find(data_stat.begin(), data_stat.end(), 0) != data_stat.end()) { // bool new_while_first = true; // for (size_t i = 0; i < data_len; ++i) { // if (data_stat.at(i) == 0 && new_while_first && exists_change == 0) { // new_while_first = false; // std::vector idx; // idx.push_back(i); // clustr_member_raw.push_back(idx); // pcl::PointXYZ center; // center.x = in_cloud->points.at(i).x; // center.y = in_cloud->points.at(i).y; // center.z = in_cloud->points.at(i).z; // cluster_center_raw.push_back(center); // data_stat.at(i) = 1; // cur_change += 1; // cluster_weight.push_back(1); // m += 1; // } // else if (data_stat[i] == 0) { // std::vector distances; // for (size_t j = 0; j < clustr_member_raw.size(); ++j) { // std::vector distances_sub; // for (size_t jj = 0; jj < clustr_member_raw.at(j).size(); ++jj) { // size_t ele_idx = clustr_member_raw.at(j).at(jj); // double d = sqrt( // (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) * (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) + // (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) * (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) + // (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z) * (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z)); // distances_sub.push_back(d); // } // double min_dist = *std::min_element(distances_sub.begin(), distances_sub.end()); // distances.push_back(min_dist); // } // int min_idx = std::min_element(distances.begin(), distances.end()) - distances.begin(); // if (distances.at(min_idx) < d1) { // data_stat.at(i) = 1; // double w = cluster_weight.at(min_idx); // cluster_weight.at(min_idx) += 1; // clustr_member_raw.at(min_idx).push_back(i); // cluster_center_raw.at(min_idx).x = (cluster_center_raw.at(min_idx).x * w + in_cloud->points.at(i).x) / (w + 1); // cluster_center_raw.at(min_idx).y = (cluster_center_raw.at(min_idx).y * w + in_cloud->points.at(i).y) / (w + 1); // cluster_center_raw.at(min_idx).z = (cluster_center_raw.at(min_idx).z * w + in_cloud->points.at(i).z) / (w + 1); // cur_change += 1; // } // else if (distances.at(min_idx) > d2) { // std::vector idx; // idx.push_back(i); // clustr_member_raw.push_back(idx); // pcl::PointXYZ center; // center.x = in_cloud->points.at(i).x; // center.y = in_cloud->points.at(i).y; // center.z = in_cloud->points.at(i).z; // cluster_center_raw.push_back(center); // data_stat.at(i) = 1; // cur_change += 1; // cluster_weight.push_back(1); // m += 1; // } // } // else if (data_stat.at(i) == 1) { // cur_change += 1; // } // } // exists_change = fabs(cur_change - prev_change); // prev_change = cur_change; // cur_change = 0; // } // // copy result // for (size_t i = 0; i < clustr_member_raw.size(); ++i) { // //if (clustr_member_raw.at(i).size() < 20) { continue; } // cluster_center.push_back(cluster_center_raw.at(i)); // clustr_member.push_back(clustr_member_raw.at(i)); // } // if (m_pLogger) { // stringstream buff; // buff << m_pcdId << ": root center estimate: euclidean_clustering_ttsas() end"; // m_pLogger->INFO(buff.str()); // } //} }