123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- /*
- 通过点云数据识别抓取位置信息
- 1)获取点云
- 2)剔除离群点
- 3)降采样
- 4)植株检测
- 5)选出最前,最右侧植株
- 6)植株抓取位置检测
- */
- #include <pcl\io\ply_io.h>
- #include <pcl\visualization\cloud_viewer.h>
- #include <pcl\filters\crop_box.h>
- #include <pcl\filters\radius_outlier_removal.h>
- #include <pcl\filters\voxel_grid.h>
- #include <pcl\common\common.h>
- #include <math.h>
- #include "grab_point_rs.h"
- #include "utils.h"
- #define PI std::acos(-1)
- namespace graft_cv {
- CRootStockGrabPoint::CRootStockGrabPoint(ConfigParam&cp, CGcvLogger*pLog/*=0*/)
- :m_cparam(cp),
- m_pLogger(pLog)
- {
- }
- CRootStockGrabPoint::~CRootStockGrabPoint() {}
- float* CRootStockGrabPoint::get_raw_point_cloud(int &data_size)
- {
- data_size = m_raw_cloud->width * m_raw_cloud->height;
- if (data_size == 0) {
- return 0;
- }
- else {
- pcl::PointXYZ* pp = m_raw_cloud->points.data();
- return (float*)pp->data;
- }
- }
- int CRootStockGrabPoint::load_data(
- float*pPoint,
- int pixel_size,
- int pt_size,
- const char* fn/* = 0*/)
- {
- int rst = 0;
- //1 get point cloud data
- if (pPoint != 0 && pt_size>0) {
- //read point
- m_raw_cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
- int step = pixel_size;
- for (int i = 0; i < pt_size; ++i) {
- pcl::PointXYZ pt = { pPoint[i*step], pPoint[i*step + 1] , pPoint[i*step + 2] };
- m_raw_cloud->push_back(pt);
- }
- rst = m_raw_cloud->width * m_raw_cloud->height;
- if (m_pLogger) {
- stringstream buff;
- buff << "load raw point cloud " << rst << " data points";
- m_pLogger->INFO(buff.str());
- }
- }
- else if (fn != 0) {
- //read file
- rst = this->read_ply_file(fn);
- }
- else {//error
- if (m_pLogger) {
- m_pLogger->ERRORINFO("no valid input");
- return (-1);
- }
- }
- if (m_cparam.image_show) {
- viewer_cloud(m_raw_cloud, std::string("raw point cloud"));
- }
- return rst;
- }
- int CRootStockGrabPoint::grab_point_detect(
- PositionInfo& posinfo
- )
- {
-
- //2 crop filter
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- box_filter.setMin(Eigen::Vector4f(m_cparam.rs_grab_xmin, m_cparam.rs_grab_ymin, m_cparam.rs_grab_zmin, 1));
- box_filter.setMax(Eigen::Vector4f(m_cparam.rs_grab_xmax, m_cparam.rs_grab_ymax, m_cparam.rs_grab_zmax, 1));
- box_filter.setNegative(false);
- box_filter.setInputCloud(m_raw_cloud);
- box_filter.filter(*cloud_inbox);
- if (m_pLogger) {
- stringstream buff;
- buff << "CropBox croped point cloud " << cloud_inbox->width * cloud_inbox->height << " data points";
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud_inbox, std::string("cloud_inbox"));
- }
- //3 filtler with radius remove
- int nb_points = 20;
- double stem_radius = m_cparam.rs_grab_stem_diameter / 2.0;
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ror(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror;
- ror.setInputCloud(cloud_inbox);
- ror.setRadiusSearch(stem_radius);
- ror.setMinNeighborsInRadius(nb_points);
- ror.filter(*cloud_ror);
- if (m_pLogger) {
- stringstream buff;
- buff << "RadiusOutlierRemoval filtered point cloud " << cloud_ror->width * cloud_ror->height << " data points. param stem_radius="<<
- stem_radius<<", nb_points="<< nb_points;
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud_ror, std::string("cloud_ror"));
- }
- //3 voxel grid down sampling
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_dowm_sampled(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::VoxelGrid<pcl::PointXYZ> outrem;
- outrem.setInputCloud(cloud_ror);
- outrem.setLeafSize(stem_radius, stem_radius, stem_radius);
- outrem.filter(*cloud_dowm_sampled);
- if (m_pLogger) {
- stringstream buff;
- buff << "VoxelGrid dowm_sampled point cloud " << cloud_dowm_sampled->width * cloud_dowm_sampled->height << " data points";
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud_dowm_sampled, std::string("cloud_dowm_sampled"));
- }
- //4 seedling position
- std::vector<int> first_seedling_cloud_idx;
- pcl::PointXYZ xz_center;
- find_seedling_position(cloud_dowm_sampled, first_seedling_cloud_idx, xz_center);
- if (m_pLogger) {
- stringstream buff;
- buff << "after find_seedling_position(), foud first seedling seeds points size " << first_seedling_cloud_idx .size();
- m_pLogger->INFO(buff.str());
- }
- //5 nearest seedling grab point selection
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_seedling_seed(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud_dowm_sampled, first_seedling_cloud_idx, *cloud_seedling_seed);
- std::vector<int>mass_idx;
- double dist_mean = compute_nearest_neighbor_distance(cloud_dowm_sampled);
- std::vector<double> mass_indices;
- crop_nn_analysis(cloud_ror, cloud_seedling_seed, dist_mean, mass_indices, mass_idx);
-
- double candidate_th = otsu(mass_indices);
- std::vector<int> optimal_seeds_idx;
- for (size_t j = 0; j < mass_idx.size(); ++j) {
- if (mass_indices[mass_idx[j]] >= candidate_th) {
- optimal_seeds_idx.push_back(mass_idx[j]);
- }
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_optimal_seed(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud_seedling_seed, optimal_seeds_idx, *cloud_optimal_seed);
- pcl::PointXYZ selected_pt;
- int selected_pt_idx;
- get_optimal_seed(cloud_optimal_seed, selected_pt, selected_pt_idx);
- posinfo.rs_grab_x = selected_pt.x;
- posinfo.rs_grab_y = selected_pt.y;
- posinfo.rs_grab_z = selected_pt.z;
- ////////////////////////////////////////////////////////////////////
- //debug
- if (m_cparam.image_show) {
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cand_demo(new pcl::PointCloud<pcl::PointXYZRGB>);
- pcl::copyPointCloud(*cloud_dowm_sampled, *cloud_cand_demo);
- for (auto& pt : *cloud_cand_demo) {
- pt.r = 255;
- pt.g = 255;
- pt.b = 255;
- }
- int cnt = 0;
- for (auto& idx : mass_idx) {
- int p_idx = first_seedling_cloud_idx[idx];
- /*if (p_idx == optimal_seeds_idx[selected_pt_idx]) {
- cloud_cand_demo->points[p_idx].r = 0;
- cloud_cand_demo->points[p_idx].g = 255;
- cloud_cand_demo->points[p_idx].b = 0;
- }
- else {*/
- cloud_cand_demo->points[p_idx].r = 255;
- cloud_cand_demo->points[p_idx].g = 0;
- cloud_cand_demo->points[p_idx].b = 0;
- /*} */
- if (cnt > optimal_seeds_idx.size()) { break; }
- cnt++;
- }
- pcl::PointXYZRGB pt_grab = {0,255,0};
- pt_grab.x = selected_pt.x;
- pt_grab.y = selected_pt.y;
- pt_grab.z = selected_pt.z;
- pcl::PointXYZRGB pt_grab_ = { 0,255,120 };
- pt_grab_.x = selected_pt.x;
- pt_grab_.y = selected_pt.y+0.2;
- pt_grab_.z = selected_pt.z;
- cloud_cand_demo->push_back(pt_grab);
- viewer_cloud(cloud_cand_demo, std::string("cloud_cand_demo"));
- }
- return 0;
- }
- int CRootStockGrabPoint::read_ply_file(const char* fn)
- {
- m_raw_cloud.reset( new pcl::PointCloud<pcl::PointXYZ>);
- if (pcl::io::loadPLYFile<pcl::PointXYZ>(fn, *m_raw_cloud) == -1) {
- if (m_pLogger) {
- m_pLogger->ERRORINFO("could not load file: "+std::string(fn));
- }
- return (-1);
- }
- if (m_pLogger) {
- stringstream buff;
- buff << "load raw point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
- m_pLogger->INFO(buff.str());
- }
- return m_raw_cloud->width * m_raw_cloud->height;
- }
- double CRootStockGrabPoint::compute_nearest_neighbor_distance(pcl::PointCloud<pcl::PointXYZ>::Ptr pcd)
- {
- pcl::KdTreeFLANN<pcl::PointXYZ> tree;
- tree.setInputCloud(pcd);
- int k = 2;
- double res = 0.0;
- int n_points = 0;
- for (size_t i = 0; i < pcd->size(); ++i) {
- std::vector<int> idx(k);
- std::vector<float> sqr_distances(k);
- if (tree.nearestKSearch(i, k, idx, sqr_distances) == k) {
- for (int id = 1; id < k; ++id) {
- res += sqrt(sqr_distances[id]);
- ++n_points;
- }
- }
- }
- if (n_points > 0) {
- res /= (double)n_points;
- }
- return res;
- }
- void CRootStockGrabPoint::find_seedling_position(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- std::vector<int> &first_seedling_cloud_idx,
- pcl::PointXYZ&xz_center
- )
- {
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*in_cloud, *cloud2d);
- for (auto&pt : *cloud2d) {
- pt.y = 0.0;
- }
- if(m_cparam.image_show){
- viewer_cloud(cloud2d, std::string("cloud2d"));
- }
- double radius = m_cparam.rs_grab_stem_diameter;
- std::vector<int> counter;
- pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
- kdtree.setInputCloud(cloud2d);
- std::vector<int>idx;
- std::vector<float>dist_sqr;
- for (size_t i = 0; i < cloud2d->points.size(); ++i) {
- int k = kdtree.radiusSearch(cloud2d->points[i], radius, idx, dist_sqr);
- counter.push_back(k);
- }
- int th = (int)(otsu(counter));
- std::vector<int> index;
- for (size_t i = 0; i < counter.size(); ++i) {
- if (counter[i] >= th) {
- index.push_back(i);
- }
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d_pos(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud2d, index, *cloud2d_pos);
- if (m_pLogger) {
- stringstream buff;
- buff << "get 2d seedling seed point cloud " << index.size()<< " data points with thrreshold "<<th;
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud2d_pos, std::string("cloud2d_pos"));
- }
-
- //clustering
- double d1 = m_cparam.rs_grab_stem_diameter;
- double d2 = m_cparam.rs_grab_stem_diameter * 3.0;
- std::vector<pcl::PointXYZ>cluster_center;
- std::vector<std::vector<int>> cluster_member;
- euclidean_clustering_ttsas(cloud2d_pos, d1, d2, cluster_center, cluster_member);
- if (m_pLogger) {
- stringstream buff;
- buff << "euclidean_clustering_ttsas: " << cluster_center.size() << " t1=" << d1
- << " t2=" << d2;
- m_pLogger->INFO(buff.str());
- }
- //sort cluster center, get the frontest leftest one
- std::vector<float> cluster_index;
- for (auto&pt : cluster_center) {
- float idx = pt.x - pt.z;
- cluster_index.push_back(idx);
- }
- int first_idx = std::min_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
- first_seedling_cloud_idx.clear();
- for (auto&v : cluster_member[first_idx]) {
- size_t i = index[v];
- first_seedling_cloud_idx.push_back(i);
- }
- xz_center.x = cluster_center[first_idx].x;
- xz_center.y = cluster_center[first_idx].y;
- xz_center.z = cluster_center[first_idx].z;
- if (m_pLogger) {
- stringstream buff;
- buff << "euclidean_clustering_ttsas, find cluster center(" << xz_center.x
- <<", "<< xz_center.y<<", "<< xz_center.z<<")";
- m_pLogger->INFO(buff.str());
- }
- }
- void CRootStockGrabPoint::crop_nn_analysis(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- pcl::PointCloud<pcl::PointXYZ>::Ptr seed_cloud,
- double dist_mean,
- std::vector<double>&mass_indices,
- std::vector<int>& candidate_idx
- )
- {
- candidate_idx.clear();
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- box_filter.setNegative(false);
- box_filter.setInputCloud(in_cloud);
- double radius = 5;
- double rx = 0.8;
- double ry = 1.0;
- double rz = 0.8;
- double cx, cy, cz;
- double dz;
- for (size_t i = 0; i < seed_cloud->points.size(); ++i) {
- cx = seed_cloud->points[i].x;
- cy = seed_cloud->points[i].y;
- cz = seed_cloud->points[i].z;
- box_filter.setMin(Eigen::Vector4f(cx - rx*radius, cy - ry*radius, cz - rz*radius, 1));
- box_filter.setMax(Eigen::Vector4f(cx + rx*radius, cy + ry*radius, cz + rz*radius, 1));
- box_filter.filter(*cloud_inbox);
- //dz
- Eigen::Vector4f min_point;
- Eigen::Vector4f max_point;
- pcl::getMinMax3D(*cloud_inbox, min_point, max_point);
- dz = max_point(2) - min_point(2);
- //project to xy-plane
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox_xy(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud_inbox, *cloud_inbox_xy);
- for (auto&pt : *cloud_inbox_xy) { pt.z = 0.0; }
- //pca
- double dx_obb;
- double dy_obb;
- double angle_obb;
- cal_obb_2d(cloud_inbox_xy, 0, dx_obb, dy_obb, angle_obb);
- try {
- double dx_grid = dx_obb / dist_mean;
- double dy_grid = dy_obb / dist_mean;
- double dz_grid = dz / dist_mean;
- double fill_ratio = cloud_inbox->points.size() / dx_grid / dy_grid / dz_grid;
- double y_ratio = dy_obb / dx_obb/2;
- y_ratio = pow(y_ratio, 2);
- double a_ratio = cos((angle_obb - 90)*PI / 180.0);
- a_ratio = pow(a_ratio, 3);
- double mass_index = fill_ratio*y_ratio*a_ratio;
- mass_indices.push_back(mass_index);
-
- if (m_pLogger) {
- stringstream buff;
- buff << i << "/" << seed_cloud->points.size() << " dx=" << dx_obb << ", dy=" << dy_obb << ", fill_ratio=" << fill_ratio
- << ", y_ratio=" << y_ratio << ", a_ratio=" << a_ratio << ", mass_index=" << mass_index;
- m_pLogger->INFO(buff.str());
- }
- }
- catch (...) {
- mass_indices.push_back(0);
- }
- }
- // sort by mass_indices
- std::vector<size_t> sort_idx = sort_indexes_e(mass_indices, false);
- for (auto&v : sort_idx) { candidate_idx.push_back((int)v); }
- }
- void CRootStockGrabPoint::euclidean_clustering_ttsas(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- double d1, double d2,
- std::vector<pcl::PointXYZ>&cluster_center,
- std::vector<std::vector<int>> &clustr_member
- )
- {
- std::vector<int> cluster_weight;
- std::vector<int> data_stat;
- for (size_t i = 0; i < in_cloud->points.size(); ++i) { data_stat.push_back(0); }
- size_t data_len = in_cloud->points.size();
- int exists_change = 0;
- int prev_change = 0;
- int cur_change = 0;
- int m = 0;
- while (std::find(data_stat.begin(), data_stat.end(), 0) != data_stat.end()) {
- bool new_while_first = true;
- for (size_t i = 0; i < data_len; ++i) {
- if (data_stat[i] == 0 && new_while_first && exists_change == 0) {
- new_while_first = false;
- std::vector<int> idx;
- idx.push_back(i);
- clustr_member.push_back(idx);
- pcl::PointXYZ center;
- center.x = in_cloud->points[i].x;
- center.y = in_cloud->points[i].y;
- center.z = in_cloud->points[i].z;
- cluster_center.push_back(center);
- data_stat[i] = 1;
- cur_change += 1;
- cluster_weight.push_back(1);
- m += 1;
- }
- else if (data_stat[i] == 0) {
- std::vector<float> distances;
- for (size_t j = 0; j < clustr_member.size(); ++j) {
- std::vector<float> distances_sub;
- for (size_t jj = 0; jj < clustr_member[j].size(); ++jj) {
- size_t ele_idx = clustr_member[j][jj];
- double d = sqrt(
- (in_cloud->points[i].x - in_cloud->points[ele_idx].x) * (in_cloud->points[i].x - in_cloud->points[ele_idx].x) +
- (in_cloud->points[i].y - in_cloud->points[ele_idx].y) * (in_cloud->points[i].y - in_cloud->points[ele_idx].y) +
- (in_cloud->points[i].z - in_cloud->points[ele_idx].z) * (in_cloud->points[i].z - in_cloud->points[ele_idx].z));
- distances_sub.push_back(d);
- }
- double min_dist = *std::min_element(distances_sub.begin(), distances_sub.end());
- distances.push_back(min_dist);
- }
- int min_idx = std::min_element(distances.begin(), distances.end()) - distances.begin();
- if (distances[min_idx] < d1) {
- data_stat[i] = 1;
- double w = cluster_weight[min_idx];
- cluster_weight[min_idx] += 1;
- clustr_member[min_idx].push_back(i);
- cluster_center[min_idx].x = (cluster_center[min_idx].x * w + in_cloud->points[i].x) / (w + 1);
- cluster_center[min_idx].y = (cluster_center[min_idx].y * w + in_cloud->points[i].y) / (w + 1);
- cluster_center[min_idx].z = (cluster_center[min_idx].z * w + in_cloud->points[i].z) / (w + 1);
- cur_change += 1;
- }
- else if (distances[min_idx] > d2) {
- std::vector<int> idx;
- idx.push_back(i);
- clustr_member.push_back(idx);
- pcl::PointXYZ center;
- center.x = in_cloud->points[i].x;
- center.y = in_cloud->points[i].y;
- center.z = in_cloud->points[i].z;
- cluster_center.push_back(center);
- data_stat[i] = 1;
- cur_change += 1;
- cluster_weight.push_back(1);
- m += 1;
- }
- }
- else if (data_stat[i] == 1) {
- cur_change += 1;
- }
- }
- exists_change = fabs(cur_change - prev_change);
- prev_change = cur_change;
- cur_change = 0;
- }
- }
- void CRootStockGrabPoint::cal_obb_2d(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- int axis, //0--xy, 1--zy
- double &dx_obb,
- double &dy_obb,
- double &angle_obb
- )
- {
- // asign value
- Eigen::MatrixXd pts(in_cloud->points.size(), 2);
- for (size_t i = 0; i < in_cloud->points.size(); ++i) {
- if (axis == 0) {
- pts(i, 0) = in_cloud->points[i].x;
- }
- else {
- pts(i, 0) = in_cloud->points[i].z;
- }
- pts(i, 1) = in_cloud->points[i].y;
- }
- // centerlize
- Eigen::MatrixXd mu = pts.colwise().mean();
- Eigen::RowVectorXd mu_row = mu;
- pts.rowwise() -= mu_row;
- //calculate covariance
- Eigen::MatrixXd C = pts.adjoint()*pts;
- C = C.array() / (pts.cols() - 1);
- //compute eig
- Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eig(C);
- Eigen::MatrixXd d = eig.eigenvalues();
- Eigen::MatrixXd v = eig.eigenvectors();
- //projection
- Eigen::MatrixXd p = pts * v;
- Eigen::VectorXd minv = p.colwise().minCoeff();
- Eigen::VectorXd maxv = p.colwise().maxCoeff();
- Eigen::VectorXd range = maxv - minv;
- dy_obb = range(1);
- dx_obb = range(0);
- angle_obb = std::atan2(v(1, 1), v(0, 1));
- if (angle_obb < 0) { angle_obb = PI + angle_obb; }
- angle_obb = angle_obb * 180 / PI;
- }
- void CRootStockGrabPoint::get_optimal_seed(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- pcl::PointXYZ&pt,
- int &pt_idx)
- {
- double d1 = m_cparam.rs_grab_stem_diameter;
- double d2 = m_cparam.rs_grab_stem_diameter * 4.0;
- std::vector<pcl::PointXYZ>cluster_center;
- std::vector<std::vector<int>> cluster_member;
- euclidean_clustering_ttsas(in_cloud, d1, d2, cluster_center, cluster_member);
- float max_y = -1.0e6;
- int max_idx = -1;
- int member_size = 5;
- for (int i = 0; i < cluster_member.size(); ++i) {
- if (cluster_member[i].size() < member_size) {
- continue;
- }
- if (cluster_center[i].y > max_y) {
- max_y = cluster_center[i].y;
- max_idx = i;
- }
- }
- //find nearest pt
- float nearest_dist = 1.0e6;
- int nearest_idx = -1;
- for (int i = 0; i < cluster_member[max_idx].size(); ++i) {
- int idx = cluster_member[max_idx][i];
- float dist = fabs(in_cloud->points[idx].x - cluster_center[max_idx].x) +
- fabs(in_cloud->points[idx].y - cluster_center[max_idx].y) +
- fabs(in_cloud->points[idx].z - cluster_center[max_idx].z);
- if (dist < nearest_dist) {
- nearest_dist = dist;
- nearest_idx = idx;
- }
- }
- pt.x = in_cloud->points[nearest_idx].x;
- pt.y = in_cloud->points[nearest_idx].y;
- pt.z = in_cloud->points[nearest_idx].z;
- pt_idx = nearest_idx;
- }
- void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, std::string&winname)
- {
- pcl::visualization::CloudViewer viewer(winname);
- //viewer.runOnVisualizationThreadOnce(viewerOneOff);
- viewer.showCloud(cloud);
- while (!viewer.wasStopped()) {
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, std::string&winname)
- {
- pcl::visualization::CloudViewer viewer(winname);
- //viewer.runOnVisualizationThreadOnce(viewerOneOff);
- viewer.showCloud(cloud);
- while (!viewer.wasStopped()) {
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- };
|