grab_point_rs.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. 通过点云数据识别抓取位置信息
  3. 1)获取点云
  4. 2)剔除离群点
  5. 3)降采样
  6. 4)植株检测
  7. 5)选出最前,最右侧植株
  8. 6)植株抓取位置检测
  9. */
  10. #include <pcl\io\ply_io.h>
  11. #include <pcl\visualization\cloud_viewer.h>
  12. #include <pcl\filters\crop_box.h>
  13. #include <pcl\filters\radius_outlier_removal.h>
  14. #include <pcl\filters\voxel_grid.h>
  15. #include <pcl\common\common.h>
  16. //#include <pcl\features\moment_of_inertia_estimation.h>
  17. //#include <pcl\segmentation\sac_segmentation.h>
  18. #include <math.h>
  19. #include "grab_point_rs.h"
  20. #include "utils.h"
  21. #define PI std::acos(-1)
  22. namespace graft_cv {
  23. CRootStockGrabPoint::CRootStockGrabPoint(ConfigParam&cp, CGcvLogger*pLog/*=0*/)
  24. :m_cparam(cp),
  25. m_pLogger(pLog),
  26. m_dtype(0),
  27. m_pcdId(""),
  28. m_ppImgSaver(0)
  29. {
  30. }
  31. CRootStockGrabPoint::~CRootStockGrabPoint() {}
  32. float* CRootStockGrabPoint::get_raw_point_cloud(int &data_size)
  33. {
  34. data_size = m_raw_cloud->width * m_raw_cloud->height;
  35. if (data_size == 0) {
  36. return 0;
  37. }
  38. else {
  39. pcl::PointXYZ* pp = m_raw_cloud->points.data();
  40. return (float*)pp->data;
  41. }
  42. }
  43. int CRootStockGrabPoint::load_data(
  44. float*pPoint,
  45. int pixel_size,
  46. int pt_size,
  47. const char* fn/* = 0*/)
  48. {
  49. int rst = 0;
  50. //1 get point cloud data
  51. if (pPoint != 0 && pt_size>0) {
  52. //read point
  53. m_raw_cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
  54. int step = pixel_size;
  55. for (int i = 0; i < pt_size; ++i) {
  56. pcl::PointXYZ pt = { pPoint[i*step], pPoint[i*step + 1] , pPoint[i*step + 2] };
  57. m_raw_cloud->push_back(pt);
  58. }
  59. rst = m_raw_cloud->width * m_raw_cloud->height;
  60. if (m_pLogger) {
  61. stringstream buff;
  62. buff << "load raw point cloud " << rst << " data points";
  63. m_pLogger->INFO(buff.str());
  64. }
  65. }
  66. else if (fn != 0) {
  67. //read file
  68. rst = this->read_ply_file(fn);
  69. }
  70. else {//error
  71. if (m_pLogger) {
  72. m_pLogger->ERRORINFO("no valid input");
  73. return (-1);
  74. }
  75. }
  76. if (m_dtype == 0) {
  77. m_pcdId = getImgId(img_type::sola_sc_pcd);
  78. }
  79. else {
  80. m_pcdId = getImgId(img_type::sola_rs_pcd);
  81. }
  82. if (m_ppImgSaver && *m_ppImgSaver) {
  83. (*m_ppImgSaver)->saveBinPly(m_raw_cloud, m_pcdId);
  84. }
  85. if (m_cparam.image_show) {
  86. viewer_cloud(m_raw_cloud, std::string("raw point cloud"));
  87. }
  88. return rst;
  89. }
  90. int CRootStockGrabPoint::grab_point_detect(
  91. int dtype,
  92. PositionInfo& posinfo
  93. )
  94. {
  95. // dtype == 0, scion
  96. // dtype != 0, rootstock
  97. // 输入,穗苗--0, 砧木--1
  98. if (m_raw_cloud->width * m_raw_cloud->height < 1) {
  99. if (m_pLogger) {
  100. stringstream buff;
  101. buff << "m_raw_cloud point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
  102. m_pLogger->ERRORINFO(buff.str());
  103. }
  104. return 1;
  105. }
  106. //2 crop filter
  107. if (m_pLogger) {
  108. m_pLogger->INFO("begin crop");
  109. }
  110. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
  111. pcl::CropBox<pcl::PointXYZ> box_filter;
  112. m_dtype = dtype;
  113. if (dtype != 0) {//rootstock
  114. box_filter.setMin(Eigen::Vector4f(m_cparam.rs_grab_xmin, m_cparam.rs_grab_ymin, m_cparam.rs_grab_zmin, 1));
  115. box_filter.setMax(Eigen::Vector4f(m_cparam.rs_grab_xmax, m_cparam.rs_grab_ymax, m_cparam.rs_grab_zmax, 1));
  116. }
  117. else {//scion
  118. box_filter.setMin(Eigen::Vector4f(m_cparam.sc_grab_xmin, m_cparam.sc_grab_ymin, m_cparam.sc_grab_zmin, 1));
  119. box_filter.setMax(Eigen::Vector4f(m_cparam.sc_grab_xmax, m_cparam.sc_grab_ymax, m_cparam.sc_grab_zmax, 1));
  120. }
  121. box_filter.setNegative(false);
  122. box_filter.setInputCloud(m_raw_cloud);
  123. box_filter.filter(*cloud_inbox);
  124. if (m_pLogger) {
  125. stringstream buff;
  126. buff << "CropBox croped point cloud " << cloud_inbox->width * cloud_inbox->height << " data points";
  127. m_pLogger->INFO(buff.str());
  128. }
  129. if (cloud_inbox->width * cloud_inbox->height < 1) {
  130. return 1;
  131. }
  132. if (m_cparam.image_show) {
  133. viewer_cloud(cloud_inbox, std::string("cloud_inbox"));
  134. }
  135. if (m_pLogger) {
  136. m_pLogger->INFO("end crop");
  137. }
  138. //3 filtler with radius remove
  139. if (m_pLogger) {
  140. m_pLogger->INFO("begin ror");
  141. }
  142. int nb_points = 20;
  143. double stem_radius = m_cparam.rs_grab_stem_diameter / 2.0;
  144. if(dtype == 0){
  145. stem_radius = m_cparam.sc_grab_stem_diameter / 2.0;
  146. }
  147. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ror(new pcl::PointCloud<pcl::PointXYZ>);
  148. pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror;
  149. ror.setInputCloud(cloud_inbox);
  150. ror.setRadiusSearch(stem_radius);
  151. ror.setMinNeighborsInRadius(nb_points);
  152. ror.filter(*cloud_ror);
  153. if (m_pLogger) {
  154. stringstream buff;
  155. buff << "RadiusOutlierRemoval filtered point cloud " << cloud_ror->width * cloud_ror->height << " data points. param stem_radius="<<
  156. stem_radius<<", nb_points="<< nb_points;
  157. m_pLogger->INFO(buff.str());
  158. }
  159. if (cloud_ror->width * cloud_ror->height < 1) {
  160. return 1;
  161. }
  162. if (m_cparam.image_show) {
  163. viewer_cloud(cloud_ror, std::string("cloud_ror"));
  164. }
  165. if (m_pLogger) {
  166. m_pLogger->INFO("end ror");
  167. }
  168. //3 voxel grid down sampling
  169. if (m_pLogger) {
  170. m_pLogger->INFO("begin down");
  171. }
  172. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_dowm_sampled(new pcl::PointCloud<pcl::PointXYZ>);
  173. pcl::VoxelGrid<pcl::PointXYZ> outrem;
  174. outrem.setInputCloud(cloud_ror);
  175. outrem.setLeafSize(stem_radius, stem_radius, stem_radius);
  176. outrem.filter(*cloud_dowm_sampled);
  177. if (m_pLogger) {
  178. stringstream buff;
  179. buff << "VoxelGrid dowm_sampled point cloud " << cloud_dowm_sampled->width * cloud_dowm_sampled->height << " data points (if < 200, return)";
  180. m_pLogger->INFO(buff.str());
  181. }
  182. if (cloud_dowm_sampled->width * cloud_dowm_sampled->height < 50) {
  183. return 1;
  184. }
  185. if (m_cparam.image_show) {
  186. viewer_cloud(cloud_dowm_sampled, std::string("cloud_dowm_sampled"));
  187. }
  188. if (m_pLogger) {
  189. m_pLogger->INFO("end down");
  190. }
  191. //4 seedling position
  192. std::vector<int> first_seedling_cloud_idx;
  193. pcl::PointXYZ xz_center;
  194. if (m_pLogger) {
  195. m_pLogger->INFO("begin find seedling position");
  196. }
  197. //find_seedling_position_line_based(cloud_ror, first_seedling_cloud_idx, xz_center);
  198. find_seedling_position(cloud_dowm_sampled, first_seedling_cloud_idx, xz_center);
  199. if (m_pLogger) {
  200. stringstream buff;
  201. buff << "after find_seedling_position(), foud first seedling seeds points size " << first_seedling_cloud_idx .size();
  202. m_pLogger->INFO(buff.str());
  203. }
  204. if (m_pLogger) {
  205. m_pLogger->INFO("end find seedling position");
  206. }
  207. //5 nearest seedling grab point selection
  208. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_seedling_seed(new pcl::PointCloud<pcl::PointXYZ>);
  209. pcl::copyPointCloud(*cloud_dowm_sampled, first_seedling_cloud_idx, *cloud_seedling_seed);
  210. std::vector<int>mass_idx;
  211. double dist_mean = compute_nearest_neighbor_distance(cloud_dowm_sampled);
  212. std::vector<double> mass_indices;
  213. if (m_pLogger) {
  214. m_pLogger->INFO("begin crop nn_analysis");
  215. }
  216. crop_nn_analysis(cloud_ror, cloud_seedling_seed, dist_mean, mass_indices, mass_idx);
  217. if (m_pLogger) {
  218. m_pLogger->INFO("end crop nn_analysis");
  219. }
  220. double candidate_th = otsu(mass_indices);
  221. std::vector<int> optimal_seeds_idx;
  222. for (size_t j = 0; j < mass_idx.size(); ++j) {
  223. if (mass_indices.at(mass_idx.at(j)) >= candidate_th) {
  224. optimal_seeds_idx.push_back(mass_idx.at(j));
  225. }
  226. }
  227. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_optimal_seed(new pcl::PointCloud<pcl::PointXYZ>);
  228. pcl::copyPointCloud(*cloud_seedling_seed, optimal_seeds_idx, *cloud_optimal_seed);
  229. pcl::PointXYZ selected_pt;
  230. int selected_pt_idx;
  231. if (m_pLogger) {
  232. m_pLogger->INFO("begin get_optimal_seed");
  233. }
  234. get_optimal_seed(cloud_optimal_seed, selected_pt, selected_pt_idx);
  235. if (selected_pt_idx < 0) {
  236. return 1;
  237. }
  238. if (m_pLogger) {
  239. m_pLogger->INFO("end get_optimal_seed");
  240. }
  241. posinfo.rs_grab_x = selected_pt.x;
  242. posinfo.rs_grab_y = selected_pt.y;
  243. posinfo.rs_grab_z = selected_pt.z;
  244. ////////////////////////////////////////////////////////////////////
  245. //debug
  246. if (m_cparam.image_show) {
  247. pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cand_demo(new pcl::PointCloud<pcl::PointXYZRGB>);
  248. pcl::copyPointCloud(*cloud_dowm_sampled, *cloud_cand_demo);
  249. for (auto& pt : *cloud_cand_demo) {
  250. pt.r = 255;
  251. pt.g = 255;
  252. pt.b = 255;
  253. }
  254. int cnt = 0;
  255. for (auto& idx : mass_idx) {
  256. int p_idx = first_seedling_cloud_idx.at(idx);
  257. /*if (p_idx == optimal_seeds_idx[selected_pt_idx]) {
  258. cloud_cand_demo->points[p_idx].r = 0;
  259. cloud_cand_demo->points[p_idx].g = 255;
  260. cloud_cand_demo->points[p_idx].b = 0;
  261. }
  262. else {*/
  263. cloud_cand_demo->points.at(p_idx).r = 255;
  264. cloud_cand_demo->points.at(p_idx).g = 0;
  265. cloud_cand_demo->points.at(p_idx).b = 0;
  266. /*} */
  267. if (cnt > optimal_seeds_idx.size()) { break; }
  268. cnt++;
  269. }
  270. pcl::PointXYZRGB pt_grab = {0,255,0};
  271. pt_grab.x = selected_pt.x;
  272. pt_grab.y = selected_pt.y;
  273. pt_grab.z = selected_pt.z;
  274. pcl::PointXYZRGB pt_grab_ = { 0,255,120 };
  275. pt_grab_.x = selected_pt.x;
  276. pt_grab_.y = selected_pt.y+0.2;
  277. pt_grab_.z = selected_pt.z;
  278. cloud_cand_demo->push_back(pt_grab);
  279. //viewer_cloud(cloud_cand_demo, std::string("cloud_cand_demo"));
  280. viewer_cloud_debug(cloud_cand_demo, selected_pt, std::string("cloud_cand_demo"));
  281. }
  282. return 0;
  283. }
  284. int CRootStockGrabPoint::read_ply_file(const char* fn)
  285. {
  286. m_raw_cloud.reset( new pcl::PointCloud<pcl::PointXYZ>);
  287. if (pcl::io::loadPLYFile<pcl::PointXYZ>(fn, *m_raw_cloud) == -1) {
  288. if (m_pLogger) {
  289. m_pLogger->ERRORINFO("could not load file: "+std::string(fn));
  290. }
  291. return (-1);
  292. }
  293. if (m_pLogger) {
  294. stringstream buff;
  295. buff << "load raw point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
  296. m_pLogger->INFO(buff.str());
  297. }
  298. return m_raw_cloud->width * m_raw_cloud->height;
  299. }
  300. double CRootStockGrabPoint::compute_nearest_neighbor_distance(pcl::PointCloud<pcl::PointXYZ>::Ptr pcd)
  301. {
  302. pcl::KdTreeFLANN<pcl::PointXYZ> tree;
  303. tree.setInputCloud(pcd);
  304. int k = 2;
  305. double res = 0.0;
  306. int n_points = 0;
  307. for (size_t i = 0; i < pcd->size(); ++i) {
  308. std::vector<int> idx(k);
  309. std::vector<float> sqr_distances(k);
  310. if (tree.nearestKSearch(i, k, idx, sqr_distances) == k) {
  311. for (int id = 1; id < k; ++id) {
  312. res += sqrt(sqr_distances.at(id));
  313. ++n_points;
  314. }
  315. }
  316. }
  317. if (n_points > 0) {
  318. res /= (double)n_points;
  319. }
  320. return res;
  321. }
  322. //void CRootStockGrabPoint::find_tray_top_edge(
  323. //pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  324. //float & tray_top_edge_y
  325. //)
  326. //{
  327. // tray_top_edge_y = -1000.0;
  328. // //以毫米为单位构建vector
  329. // pcl::PointXYZ min_point_aabb;
  330. // pcl::PointXYZ max_point_aabb;
  331. // pcl::MomentOfInertiaEstimation<pcl::PointXYZ> feature_extractor;
  332. // feature_extractor.setInputCloud(in_cloud);
  333. // feature_extractor.compute();
  334. // feature_extractor.getAABB(min_point_aabb, max_point_aabb);
  335. // float miny = min_point_aabb.y;
  336. // float maxy = max_point_aabb.y;
  337. // if(maxy - miny <5.0){
  338. // tray_top_edge_y = maxy;
  339. // return;
  340. // }
  341. // std::vector<int> y_cnt_hist(int(maxy - miny), 0);
  342. // for(auto& pt : in_cloud->points){
  343. // int idx = (int)(pt.y - miny);
  344. // if(idx<0){continue;}
  345. // if (idx >= y_cnt_hist.size()) { continue; }
  346. // y_cnt_hist.at(idx) += 1;
  347. // }
  348. // //从上半部分找到最大值,作为平面上沿
  349. // int idx_part = (int)(y_cnt_hist.size() / 2);
  350. // int idx_edge = std::max_element(y_cnt_hist.begin(), y_cnt_hist.begin() + idx_part) - y_cnt_hist.begin();
  351. // tray_top_edge_y = miny + (float)(idx_edge + 2.0);
  352. //}
  353. //void CRootStockGrabPoint::find_seedling_position_line_based(
  354. // pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  355. // std::vector<int> &first_seedling_cloud_idx,
  356. // pcl::PointXYZ&xz_center
  357. //)
  358. //{
  359. // //找到穴盘上沿z,最优抓取的z,再在最优抓取的z基础上加上3作为有效范围
  360. // float tray_y = -1000.0;
  361. // float top_y = 0.0;
  362. // find_tray_top_edge(in_cloud, tray_y);
  363. // if (tray_y < -500.0) {
  364. // if (m_dtype == 0) {
  365. // //scion
  366. // tray_y = m_cparam.sc_grab_y_opt-2.0;
  367. // }
  368. // else {
  369. // tray_y = m_cparam.rs_grab_y_opt-2.0;
  370. // }
  371. // }
  372. // //up limit
  373. // if (m_dtype == 0) {
  374. // top_y = m_cparam.sc_grab_zmax;
  375. // if (top_y > m_cparam.sc_grab_y_opt + 3.0) {
  376. // top_y = m_cparam.sc_grab_y_opt + 3.0;
  377. // }
  378. // }
  379. // else {
  380. // top_y = m_cparam.rs_grab_zmax;
  381. // if (top_y > m_cparam.rs_grab_y_opt + 3.0) {
  382. // top_y = m_cparam.rs_grab_y_opt + 3.0;
  383. // }
  384. // }
  385. // //sub cloud
  386. // pcl::PointCloud<pcl::PointXYZ>::Ptr sub_cloud(new pcl::PointCloud<pcl::PointXYZ>);
  387. // pcl::CropBox<pcl::PointXYZ> box_filter;
  388. // if (m_dtype != 0) {//rootstock
  389. // box_filter.setMin(Eigen::Vector4f(m_cparam.rs_grab_xmin, tray_y, m_cparam.rs_grab_zmin, 1));
  390. // box_filter.setMax(Eigen::Vector4f(m_cparam.rs_grab_xmax, top_y, m_cparam.rs_grab_zmax, 1));
  391. // }
  392. // else {//scion
  393. // box_filter.setMin(Eigen::Vector4f(m_cparam.sc_grab_xmin, tray_y, m_cparam.sc_grab_zmin, 1));
  394. // box_filter.setMax(Eigen::Vector4f(m_cparam.sc_grab_xmax, top_y, m_cparam.sc_grab_zmax, 1));
  395. // }
  396. // box_filter.setNegative(false);
  397. // box_filter.setInputCloud(in_cloud);
  398. // box_filter.filter(*sub_cloud);
  399. // if (m_cparam.image_show) {
  400. // viewer_cloud(sub_cloud, std::string("sub inbox"));
  401. // }
  402. // //在sub_cloud中进行直线检测
  403. // segement_line(sub_cloud);
  404. //}
  405. //void CRootStockGrabPoint::segement_line(
  406. // pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud
  407. //)
  408. //{
  409. // pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
  410. // pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
  411. // pcl::SACSegmentation<pcl::PointXYZ> seg;
  412. // seg.setOptimizeCoefficients(true);
  413. // seg.setModelType(pcl::SACMODEL_LINE);
  414. // seg.setMethodType(pcl::SAC_RANSAC);
  415. // seg.setDistanceThreshold(0.5);
  416. // seg.setInputCloud(in_cloud);
  417. // seg.segment(*inliers, *coefficients);
  418. // if (m_cparam.image_show) {
  419. // pcl::PointCloud<pcl::PointXYZ>::Ptr line_cloud(new pcl::PointCloud<pcl::PointXYZ>);
  420. // pcl::copyPointCloud(*in_cloud, *inliers, *line_cloud);
  421. // viewer_cloud(line_cloud, std::string("cloud_line"));
  422. // }
  423. //}
  424. ////////////////////////////////////////////////////////////
  425. void CRootStockGrabPoint::find_seedling_position(
  426. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  427. std::vector<int> &first_seedling_cloud_idx,
  428. pcl::PointXYZ&xz_center
  429. )
  430. {
  431. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d(new pcl::PointCloud < pcl::PointXYZ>);
  432. pcl::copyPointCloud(*in_cloud, *cloud2d);
  433. for (auto&pt : *cloud2d) {
  434. pt.y = 0.0;
  435. }
  436. if(m_cparam.image_show){
  437. viewer_cloud(cloud2d, std::string("cloud2d"));
  438. }
  439. double radius = m_cparam.rs_grab_stem_diameter;
  440. if (m_dtype == 0) {
  441. radius = m_cparam.sc_grab_stem_diameter;
  442. }
  443. std::vector<int> counter;
  444. pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
  445. kdtree.setInputCloud(cloud2d);
  446. std::vector<int>idx;
  447. std::vector<float>dist_sqr;
  448. for (size_t i = 0; i < cloud2d->points.size(); ++i) {
  449. int k = kdtree.radiusSearch(cloud2d->points.at(i), radius, idx, dist_sqr);
  450. counter.push_back(k);
  451. }
  452. int th = (int)(otsu(counter));
  453. std::vector<int> index;
  454. for (size_t i = 0; i < counter.size(); ++i) {
  455. if (counter.at(i) >= th) {
  456. index.push_back(i);
  457. }
  458. }
  459. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d_pos(new pcl::PointCloud < pcl::PointXYZ>);
  460. pcl::copyPointCloud(*cloud2d, index, *cloud2d_pos);
  461. if (m_pLogger) {
  462. stringstream buff;
  463. buff << "get 2d seedling seed point cloud " << index.size()<< " data points with thrreshold "<<th;
  464. m_pLogger->INFO(buff.str());
  465. }
  466. if (m_cparam.image_show) {
  467. viewer_cloud(cloud2d_pos, std::string("cloud2d_pos"));
  468. }
  469. //clustering
  470. double d1 = m_cparam.rs_grab_stem_diameter;
  471. double d2 = m_cparam.rs_grab_stem_diameter * 3.0;
  472. if (m_dtype == 0) {
  473. d1 = m_cparam.sc_grab_stem_diameter;
  474. d2 = m_cparam.sc_grab_stem_diameter * 3.0;
  475. }
  476. std::vector<pcl::PointXYZ>cluster_center;
  477. std::vector<std::vector<int>> cluster_member;
  478. euclidean_clustering_ttsas(cloud2d_pos, d1, d2, cluster_center, cluster_member);
  479. if (m_pLogger) {
  480. stringstream buff;
  481. buff << "euclidean_clustering_ttsas: " << cluster_center.size() << " t1=" << d1
  482. << " t2=" << d2;
  483. m_pLogger->INFO(buff.str());
  484. }
  485. //sort cluster center, get the frontest leftest one
  486. std::vector<float> cluster_index;
  487. for (auto&pt : cluster_center) {
  488. float idx = pt.x - pt.z;
  489. cluster_index.push_back(idx);
  490. }
  491. int first_idx = std::min_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
  492. if (m_dtype == 0) {
  493. first_idx = std::max_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
  494. }
  495. first_seedling_cloud_idx.clear();
  496. for (auto&v : cluster_member.at(first_idx)) {
  497. size_t i = index.at(v);
  498. first_seedling_cloud_idx.push_back(i);
  499. }
  500. xz_center.x = cluster_center.at(first_idx).x;
  501. xz_center.y = cluster_center.at(first_idx).y;
  502. xz_center.z = cluster_center.at(first_idx).z;
  503. if (m_pLogger) {
  504. stringstream buff;
  505. buff << "euclidean_clustering_ttsas, find cluster center(" << xz_center.x
  506. <<", "<< xz_center.y<<", "<< xz_center.z<<")";
  507. m_pLogger->INFO(buff.str());
  508. }
  509. }
  510. void CRootStockGrabPoint::crop_nn_analysis(
  511. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  512. pcl::PointCloud<pcl::PointXYZ>::Ptr seed_cloud,
  513. double dist_mean,
  514. std::vector<double>&mass_indices,
  515. std::vector<int>& candidate_idx
  516. )
  517. {
  518. candidate_idx.clear();
  519. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
  520. pcl::CropBox<pcl::PointXYZ> box_filter;
  521. box_filter.setNegative(false);
  522. box_filter.setInputCloud(in_cloud);
  523. double radius = 5;
  524. double rx = 0.8;
  525. double ry = 1.0;
  526. double rz = 0.8;
  527. double cx, cy, cz;
  528. double dz;
  529. for (size_t i = 0; i < seed_cloud->points.size(); ++i) {
  530. cx = seed_cloud->points.at(i).x;
  531. cy = seed_cloud->points.at(i).y;
  532. cz = seed_cloud->points.at(i).z;
  533. box_filter.setMin(Eigen::Vector4f(cx - rx*radius, cy - ry*radius, cz - rz*radius, 1));
  534. box_filter.setMax(Eigen::Vector4f(cx + rx*radius, cy + ry*radius, cz + rz*radius, 1));
  535. box_filter.filter(*cloud_inbox);
  536. //dz
  537. Eigen::Vector4f min_point;
  538. Eigen::Vector4f max_point;
  539. pcl::getMinMax3D(*cloud_inbox, min_point, max_point);
  540. dz = max_point(2) - min_point(2);
  541. //project to xy-plane
  542. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox_xy(new pcl::PointCloud<pcl::PointXYZ>);
  543. pcl::copyPointCloud(*cloud_inbox, *cloud_inbox_xy);
  544. for (auto&pt : *cloud_inbox_xy) { pt.z = 0.0; }
  545. //pca
  546. double dx_obb;
  547. double dy_obb;
  548. double angle_obb;
  549. cal_obb_2d(cloud_inbox_xy, 0, dx_obb, dy_obb, angle_obb);
  550. try {
  551. double dx_grid = dx_obb / dist_mean;
  552. double dy_grid = dy_obb / dist_mean;
  553. double dz_grid = dz / dist_mean;
  554. double fill_ratio = cloud_inbox->points.size() / dx_grid / dy_grid / dz_grid;
  555. double y_ratio = dy_obb / dx_obb/2;
  556. y_ratio = pow(y_ratio, 2);
  557. double a_ratio = cos((angle_obb - 90)*PI / 180.0);
  558. a_ratio = pow(a_ratio, 3);
  559. double mass_index = fill_ratio*y_ratio*a_ratio;
  560. mass_indices.push_back(mass_index);
  561. if (m_pLogger) {
  562. stringstream buff;
  563. buff << i << "/" << seed_cloud->points.size() << " dx=" << dx_obb << ", dy=" << dy_obb << ", fill_ratio=" << fill_ratio
  564. << ", y_ratio=" << y_ratio << ", a_ratio=" << a_ratio << ", mass_index=" << mass_index;
  565. m_pLogger->INFO(buff.str());
  566. }
  567. }
  568. catch (...) {
  569. mass_indices.push_back(0);
  570. }
  571. }
  572. // sort by mass_indices
  573. std::vector<size_t> sort_idx = sort_indexes_e(mass_indices, false);
  574. for (auto&v : sort_idx) { candidate_idx.push_back((int)v); }
  575. }
  576. void CRootStockGrabPoint::euclidean_clustering_ttsas(
  577. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  578. double d1, double d2,
  579. std::vector<pcl::PointXYZ>&cluster_center,
  580. std::vector<std::vector<int>> &clustr_member
  581. )
  582. {
  583. if (m_pLogger) {
  584. stringstream buff;
  585. buff << "euclidean_clustering_ttsas() begin...";
  586. m_pLogger->INFO(buff.str());
  587. }
  588. std::vector<int> cluster_weight;
  589. std::vector<int> data_stat;
  590. std::vector<pcl::PointXYZ>cluster_center_raw;
  591. std::vector<std::vector<int>> clustr_member_raw;
  592. for (size_t i = 0; i < in_cloud->points.size(); ++i) { data_stat.push_back(0); }
  593. size_t data_len = in_cloud->points.size();
  594. int exists_change = 0;
  595. int prev_change = 0;
  596. int cur_change = 0;
  597. int m = 0;
  598. while (std::find(data_stat.begin(), data_stat.end(), 0) != data_stat.end()) {
  599. bool new_while_first = true;
  600. for (size_t i = 0; i < data_len; ++i) {
  601. if (data_stat.at(i) == 0 && new_while_first && exists_change == 0) {
  602. new_while_first = false;
  603. std::vector<int> idx;
  604. idx.push_back(i);
  605. clustr_member_raw.push_back(idx);
  606. pcl::PointXYZ center;
  607. center.x = in_cloud->points.at(i).x;
  608. center.y = in_cloud->points.at(i).y;
  609. center.z = in_cloud->points.at(i).z;
  610. cluster_center_raw.push_back(center);
  611. data_stat.at(i) = 1;
  612. cur_change += 1;
  613. cluster_weight.push_back(1);
  614. m += 1;
  615. }
  616. else if (data_stat[i] == 0) {
  617. std::vector<float> distances;
  618. for (size_t j = 0; j < clustr_member_raw.size(); ++j) {
  619. std::vector<float> distances_sub;
  620. for (size_t jj = 0; jj < clustr_member_raw.at(j).size(); ++jj) {
  621. size_t ele_idx = clustr_member_raw.at(j).at(jj);
  622. double d = sqrt(
  623. (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) * (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) +
  624. (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) * (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) +
  625. (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z) * (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z));
  626. distances_sub.push_back(d);
  627. }
  628. double min_dist = *std::min_element(distances_sub.begin(), distances_sub.end());
  629. distances.push_back(min_dist);
  630. }
  631. int min_idx = std::min_element(distances.begin(), distances.end()) - distances.begin();
  632. if (distances.at(min_idx) < d1) {
  633. data_stat.at(i) = 1;
  634. double w = cluster_weight.at(min_idx);
  635. cluster_weight.at(min_idx) += 1;
  636. clustr_member_raw.at(min_idx).push_back(i);
  637. cluster_center_raw.at(min_idx).x = (cluster_center_raw.at(min_idx).x * w + in_cloud->points.at(i).x) / (w + 1);
  638. cluster_center_raw.at(min_idx).y = (cluster_center_raw.at(min_idx).y * w + in_cloud->points.at(i).y) / (w + 1);
  639. cluster_center_raw.at(min_idx).z = (cluster_center_raw.at(min_idx).z * w + in_cloud->points.at(i).z) / (w + 1);
  640. cur_change += 1;
  641. }
  642. else if (distances.at(min_idx) > d2) {
  643. std::vector<int> idx;
  644. idx.push_back(i);
  645. clustr_member_raw.push_back(idx);
  646. pcl::PointXYZ center;
  647. center.x = in_cloud->points.at(i).x;
  648. center.y = in_cloud->points.at(i).y;
  649. center.z = in_cloud->points.at(i).z;
  650. cluster_center_raw.push_back(center);
  651. data_stat.at(i) = 1;
  652. cur_change += 1;
  653. cluster_weight.push_back(1);
  654. m += 1;
  655. }
  656. }
  657. else if (data_stat.at(i)== 1) {
  658. cur_change += 1;
  659. }
  660. }
  661. exists_change = fabs(cur_change - prev_change);
  662. prev_change = cur_change;
  663. cur_change = 0;
  664. }
  665. // copy result
  666. for (size_t i = 0; i < clustr_member_raw.size(); ++i) {
  667. if (clustr_member_raw.at(i).size() < 20) { continue; }
  668. cluster_center.push_back(cluster_center_raw.at(i));
  669. clustr_member.push_back(clustr_member_raw.at(i));
  670. }
  671. if (m_pLogger) {
  672. stringstream buff;
  673. buff << "euclidean_clustering_ttsas() end";
  674. m_pLogger->INFO(buff.str());
  675. }
  676. }
  677. void CRootStockGrabPoint::cal_obb_2d(
  678. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  679. int axis, //0--xy, 1--zy
  680. double &dx_obb,
  681. double &dy_obb,
  682. double &angle_obb
  683. )
  684. {
  685. // asign value
  686. Eigen::MatrixXd pts(in_cloud->points.size(), 2);
  687. for (size_t i = 0; i < in_cloud->points.size(); ++i) {
  688. if (axis == 0) {
  689. pts(i, 0) = in_cloud->points.at(i).x;
  690. }
  691. else {
  692. pts(i, 0) = in_cloud->points.at(i).z;
  693. }
  694. pts(i, 1) = in_cloud->points.at(i).y;
  695. }
  696. // centerlize
  697. Eigen::MatrixXd mu = pts.colwise().mean();
  698. Eigen::RowVectorXd mu_row = mu;
  699. pts.rowwise() -= mu_row;
  700. //calculate covariance
  701. Eigen::MatrixXd C = pts.adjoint()*pts;
  702. C = C.array() / (pts.cols() - 1);
  703. //compute eig
  704. Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eig(C);
  705. Eigen::MatrixXd d = eig.eigenvalues();
  706. Eigen::MatrixXd v = eig.eigenvectors();
  707. //projection
  708. Eigen::MatrixXd p = pts * v;
  709. Eigen::VectorXd minv = p.colwise().minCoeff();
  710. Eigen::VectorXd maxv = p.colwise().maxCoeff();
  711. Eigen::VectorXd range = maxv - minv;
  712. dy_obb = range(1);
  713. dx_obb = range(0);
  714. angle_obb = std::atan2(v(1, 1), v(0, 1));
  715. if (angle_obb < 0) { angle_obb = PI + angle_obb; }
  716. angle_obb = angle_obb * 180 / PI;
  717. }
  718. //void CRootStockGrabPoint::get_optimal_seed(
  719. // pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  720. // pcl::PointXYZ&pt,
  721. // int &pt_idx)
  722. //{
  723. // double d1 = m_cparam.rs_grab_stem_diameter;
  724. // double d2 = m_cparam.rs_grab_stem_diameter * 4.0;
  725. // if (m_dtype != 0) {
  726. // d1 = m_cparam.sc_grab_stem_diameter;
  727. // d2 = m_cparam.sc_grab_stem_diameter * 4.0;
  728. // }
  729. // std::vector<pcl::PointXYZ>cluster_center;
  730. // std::vector<std::vector<int>> cluster_member;
  731. // euclidean_clustering_ttsas(in_cloud, d1, d2, cluster_center, cluster_member);
  732. // float min_y_dist = 1.0e6;
  733. // int opt_idx = -1;
  734. // int member_size = 5;
  735. // float y_opt = m_cparam.rs_grab_y_opt;
  736. // if (m_dtype != 0) {
  737. // y_opt = m_cparam.sc_grab_y_opt;
  738. // }
  739. // for (int i = 0; i < cluster_member.size(); ++i) {
  740. // if (cluster_member.at(i).size() < member_size) {
  741. // continue;
  742. // }
  743. // if (fabs(cluster_center.at(i).y -y_opt) < min_y_dist) {
  744. // min_y_dist = fabs(cluster_center.at(i).y - y_opt);
  745. // opt_idx = i;
  746. // }
  747. // }
  748. // if (opt_idx < 0) {
  749. // if (m_pLogger) {
  750. // stringstream buff;
  751. // buff << "get_optimal_seed failed, get invalid optimal cluster id";
  752. // m_pLogger->ERRORINFO(buff.str());
  753. // }
  754. // return;
  755. // }
  756. // //find nearest pt
  757. // float nearest_dist = 1.0e6;
  758. // int nearest_idx = -1;
  759. // for (int i = 0; i < cluster_member.at(opt_idx).size(); ++i) {
  760. // int idx = cluster_member.at(opt_idx).at(i);
  761. // float dist = fabs(in_cloud->points.at(idx).x - cluster_center.at(opt_idx).x) +
  762. // fabs(in_cloud->points.at(idx).y - cluster_center.at(opt_idx).y) +
  763. // fabs(in_cloud->points.at(idx).z - cluster_center.at(opt_idx).z);
  764. // if (dist < nearest_dist) {
  765. // nearest_dist = dist;
  766. // nearest_idx = idx;
  767. // }
  768. // }
  769. // pt.x = in_cloud->points.at(nearest_idx).x;
  770. // pt.y = in_cloud->points.at(nearest_idx).y;
  771. // pt.z = in_cloud->points.at(nearest_idx).z;
  772. // pt_idx = nearest_idx;
  773. //}
  774. void CRootStockGrabPoint::get_optimal_seed(
  775. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  776. pcl::PointXYZ&pt,
  777. int &pt_idx)
  778. {
  779. /*double d1 = m_cparam.rs_grab_stem_diameter;
  780. double d2 = m_cparam.rs_grab_stem_diameter * 4.0;
  781. if (m_dtype != 0) {
  782. d1 = m_cparam.sc_grab_stem_diameter;
  783. d2 = m_cparam.sc_grab_stem_diameter * 4.0;
  784. }
  785. std::vector<pcl::PointXYZ>cluster_center;
  786. std::vector<std::vector<int>> cluster_member;
  787. euclidean_clustering_ttsas(in_cloud, d1, d2, cluster_center, cluster_member);*/
  788. float min_y_dist = 1.0e6;
  789. int opt_idx = -1;
  790. int member_size = 5;
  791. float y_opt = m_cparam.rs_grab_y_opt;
  792. if (m_dtype == 0) {
  793. y_opt = m_cparam.sc_grab_y_opt;
  794. }
  795. for (int i = 0; i < in_cloud->points.size(); ++i) {
  796. /*if (cluster_member.at(i).size() < member_size) {
  797. continue;
  798. }*/
  799. if (fabs(in_cloud->points.at(i).y - y_opt) < min_y_dist) {
  800. min_y_dist = fabs(in_cloud->points.at(i).y - y_opt);
  801. opt_idx = i;
  802. }
  803. }
  804. if (opt_idx < 0) {
  805. if (m_pLogger) {
  806. stringstream buff;
  807. buff << "get_optimal_seed failed, get invalid optimal cluster id";
  808. m_pLogger->ERRORINFO(buff.str());
  809. }
  810. return;
  811. }
  812. //find nearest pt
  813. /*float nearest_dist = 1.0e6;
  814. int nearest_idx = -1;
  815. for (int i = 0; i < cluster_member.at(opt_idx).size(); ++i) {
  816. int idx = cluster_member.at(opt_idx).at(i);
  817. float dist = fabs(in_cloud->points.at(idx).x - cluster_center.at(opt_idx).x) +
  818. fabs(in_cloud->points.at(idx).y - cluster_center.at(opt_idx).y) +
  819. fabs(in_cloud->points.at(idx).z - cluster_center.at(opt_idx).z);
  820. if (dist < nearest_dist) {
  821. nearest_dist = dist;
  822. nearest_idx = idx;
  823. }
  824. }*/
  825. pt.x = in_cloud->points.at(opt_idx).x;
  826. pt.y = in_cloud->points.at(opt_idx).y;
  827. pt.z = in_cloud->points.at(opt_idx).z;
  828. pt_idx = opt_idx;
  829. }
  830. void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, std::string&winname)
  831. {
  832. pcl::visualization::CloudViewer viewer(winname);
  833. //viewer.runOnVisualizationThreadOnce(viewerOneOff);
  834. viewer.showCloud(cloud);
  835. while (!viewer.wasStopped()) {
  836. boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  837. }
  838. }
  839. void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, std::string&winname)
  840. {
  841. pcl::visualization::CloudViewer viewer(winname);
  842. //viewer.runOnVisualizationThreadOnce(viewerOneOff);
  843. viewer.showCloud(cloud);
  844. while (!viewer.wasStopped()) {
  845. boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  846. }
  847. }
  848. void CRootStockGrabPoint::viewer_cloud_debug(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, pcl::PointXYZ &p, std::string&winname)
  849. {
  850. pcl::visualization::PCLVisualizer viewer(winname);
  851. //viewer.runOnVisualizationThreadOnce(viewerOneOff);
  852. viewer.addPointCloud(cloud);
  853. viewer.addCoordinateSystem();
  854. pcl::PointXYZ p0, x1, y1,p00,x0,y0;
  855. p0.x = p.x;
  856. p0.y = p.y;
  857. p0.z = p.z;
  858. x1.x = p.x + 400.0;
  859. x1.y = p.y;
  860. x1.z = p.z;
  861. y1.x = p.x;
  862. y1.y = p.y + 200.0;
  863. y1.z = p.z;
  864. p00.x = 0.0;
  865. p00.y = 0.0;
  866. p00.z = p.z;
  867. x0.x = 600.0;
  868. x0.y = 0;
  869. x0.z = p.z;
  870. y0.x = 0.0;
  871. y0.y = 300.0;
  872. y0.z = p.z;
  873. viewer.addLine(p0, x1, 255, 0, 0, "x");
  874. viewer.addLine(p0, y1, 0, 255, 0, "y");
  875. viewer.addLine(p00, x0, 255, 0, 0, "x0");
  876. viewer.addLine(p00, y0, 0, 255, 0, "y0");
  877. while (!viewer.wasStopped()) {
  878. viewer.spinOnce(100);
  879. boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  880. }
  881. }
  882. };