12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101 |
- /*
- 通过点云数据识别抓取位置信息
- 1)获取点云
- 2)剔除离群点
- 3)降采样
- 4)植株检测
- 5)选出最前,最右侧植株
- 6)植株抓取位置检测
- */
- #include <pcl\io\ply_io.h>
- #include <pcl\visualization\cloud_viewer.h>
- #include <pcl\filters\crop_box.h>
- #include <pcl\filters\radius_outlier_removal.h>
- #include <pcl\filters\statistical_outlier_removal.h>
- #include <pcl\filters\voxel_grid.h>
- #include <pcl\common\common.h>
- #include <pcl\features\moment_of_inertia_estimation.h>
- #include <pcl\segmentation\sac_segmentation.h>
- #include <pcl\segmentation\extract_clusters.h>
- #include <math.h>
- #include <pcl\features\normal_3d.h>
- #include <pcl\features\boundary.h>
- #include "grab_point_rs.h"
- #include "utils.h"
- #include "peak_finder.h"
- #define PI std::acos(-1)
- namespace graft_cv {
- CRootStockGrabPoint::CRootStockGrabPoint(ConfigParam&cp, CGcvLogger*pLog/*=0*/)
- :m_cparam(cp),
- m_pLogger(pLog),
- m_dtype(0),
- m_pcdId(""),
- m_ppImgSaver(0),
- m_1st_row_zmean_rs(-1.0),
- m_1st_row_zmean_sc(-1.0),
- m_cloud_mean_dist(0.0),
- m_pImginfoResult(0),
- m_pStemInfos(0),
- m_pSeedlingStatus(0)
- {
- }
- void CRootStockGrabPoint::clear_imginfo() {
- if (m_pImginfoResult) {
- imginfo_release(&m_pImginfoResult);
- m_pImginfoResult = 0;
- }
-
- }
- CRootStockGrabPoint::~CRootStockGrabPoint() {
- this->clear_imginfo();
- if (m_pStemInfos) {
- delete m_pStemInfos;
- m_pStemInfos = 0;
- }
- if (m_pSeedlingStatus) {
- delete m_pSeedlingStatus;
- m_pSeedlingStatus = 0;
- }
- }
- float* CRootStockGrabPoint::get_raw_point_cloud(int &data_size)
- {
- data_size = m_raw_cloud->width * m_raw_cloud->height;
- if (data_size == 0) {
- return 0;
- }
- else {
- pcl::PointXYZ* pp = m_raw_cloud->points.data();
- return (float*)pp->data;
- }
- }
- int CRootStockGrabPoint::load_data(
- float*pPoint,
- int pixel_size,
- int pt_size,
- int dtype,
- const char* fn/* = 0*/)
- {
- //数据加载功能实现,并生成imageid,保存原始数据到文件
- int rst = 0;
- m_dtype = dtype;
- //generate image id
- if (m_dtype == 0) {
- m_pcdId = getImgId(img_type::sola_sc_pcd);
- }
- else {
- m_pcdId = getImgId(img_type::sola_rs_pcd);
- }
- //1 get point cloud data
- if (pPoint != 0 && pt_size>0) {
- //read point
- m_raw_cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
- int step = pixel_size;
- for (int i = 0; i < pt_size; ++i) {
- pcl::PointXYZ pt = { pPoint[i*step], pPoint[i*step + 1] , pPoint[i*step + 2] };
- m_raw_cloud->push_back(pt);
- }
- rst = m_raw_cloud->width * m_raw_cloud->height;
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": load raw point cloud " << rst << " data points";
- m_pLogger->INFO(buff.str());
- }
- }
- else if (fn != 0) {
- //read file
- rst = this->read_ply_file(fn);
- }
- else {//error
- if (m_pLogger) {
- m_pLogger->ERRORINFO(m_pcdId + ": no valid input");
- return (-1);
- }
- }
- if (m_ppImgSaver && *m_ppImgSaver) {
- (*m_ppImgSaver)->saveBinPly(m_raw_cloud, m_pcdId);
- }
- if (m_cparam.image_show) {
- pcl::visualization::PCLVisualizer viewer(m_pcdId + std::string(": raw point cloud"));
- viewer.setBackgroundColor(0.35, 0.35, 0.35);
- viewer.addCoordinateSystem();
- viewer.addPointCloud<pcl::PointXYZ>(m_raw_cloud, "raw_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "raw_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "raw_cloud");
- float xmin, ymin, zmin, xmax, ymax, zmax;
- xmin = m_cparam.rs_grab_xmin;
- ymin = m_cparam.rs_grab_ymin;
- zmin = m_cparam.rs_grab_zmin;
- xmax = m_cparam.rs_grab_xmax;
- ymax = m_cparam.rs_grab_ymax;
- zmax = m_cparam.rs_grab_zmax;
- if (m_dtype == 0) {
- xmin = m_cparam.sc_grab_xmin;
- ymin = m_cparam.sc_grab_ymin;
- zmin = m_cparam.sc_grab_zmin;
- xmax = m_cparam.sc_grab_xmax;
- ymax = m_cparam.sc_grab_ymax;
- zmax = m_cparam.sc_grab_zmax;
- }
- viewer.addCube(xmin, xmax,ymin, ymax, zmin, zmax, 0.75, 0.0, 0.0, "AABB_");
- viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION,
- pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB_");
- pcl::PointXYZ px0, px1, py1, pz1;
- px0.x = 0;
- px0.y = 0;
- px0.z = 0;
- px1.x = 10.0;
- px1.y = 0;
- px1.z = 0;
-
- py1.x = 0;
- py1.y = 10.0;
- py1.z = 0;
- pz1.x = 0;
- pz1.y = 0;
- pz1.z = 10.0;
- viewer.addLine(px0, px1, 255, 0, 0, "x");
- viewer.addLine(px0, py1, 0, 255, 0, "y");
- viewer.addLine(px0, pz1, 0, 0, 255, "z");
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- if (m_pStemInfos==0) {
- double seedling_distance = m_cparam.rs_grab_seedling_dist;
- int holes_number = m_cparam.rs_grab_holes_number;
- double x_min = m_cparam.rs_grab_xmin;
- double x_max = m_cparam.rs_grab_xmax;
- double z_min = m_cparam.rs_grab_zmin;
- double z_max = m_cparam.rs_grab_zmax;
- if (m_dtype == 0) {
- seedling_distance = m_cparam.sc_grab_seedling_dist;
- holes_number = m_cparam.sc_grab_holes_number;
- x_min = m_cparam.sc_grab_xmin;
- x_max = m_cparam.sc_grab_xmax;
- z_min = m_cparam.sc_grab_zmin;
- z_max = m_cparam.sc_grab_zmax;
- }
- m_pStemInfos = new CStemResultInfos(
- seedling_distance, holes_number,
- x_min, x_max, z_min, z_max,
- m_pcdId, m_pLogger);
- }
- return rst;
- }
- int CRootStockGrabPoint::grab_point_detect(
- PositionInfo& posinfo
- )
- {
- // 抓取位置识别入口函数,实现整个抓取位置识别功能,返回抓取位置信息
- // dtype == 0, scion
- // dtype != 0, rootstock
- // 输入,穗苗--0, 砧木--1
- if (m_raw_cloud->width * m_raw_cloud->height < 1) {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": m_raw_cloud point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
- m_pLogger->ERRORINFO(buff.str());
- }
- return 1;
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //1 crop filter,剪裁需要的部分点云
- if (m_pLogger) {
- m_pLogger->INFO(m_pcdId + ": begin crop");
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- if (m_dtype != 0) {//rootstock
- box_filter.setMin(Eigen::Vector4f(m_cparam.rs_grab_xmin, m_cparam.rs_grab_ymin, m_cparam.rs_grab_zmin, 1));
- box_filter.setMax(Eigen::Vector4f(m_cparam.rs_grab_xmax, m_cparam.rs_grab_ymax, m_cparam.rs_grab_zmax, 1));
- }
- else {//scion
- box_filter.setMin(Eigen::Vector4f(m_cparam.sc_grab_xmin, m_cparam.sc_grab_ymin, m_cparam.sc_grab_zmin, 1));
- box_filter.setMax(Eigen::Vector4f(m_cparam.sc_grab_xmax, m_cparam.sc_grab_ymax, m_cparam.sc_grab_zmax, 1));
- }
- box_filter.setNegative(false);
- box_filter.setInputCloud(m_raw_cloud);
- box_filter.filter(*cloud_inbox);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": CropBox croped point cloud " << cloud_inbox->width * cloud_inbox->height << " data points";
- m_pLogger->INFO(buff.str());
- }
- if (cloud_inbox->width * cloud_inbox->height < 1) {
- return 1;
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud_inbox, std::string("cloud_inbox"));
- }
- if (m_pLogger) {
- m_pLogger->INFO(m_pcdId + ": end crop");
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //2 filtler with radius remove, 去除孤立点
- if (m_pLogger) {
- m_pLogger->INFO(m_pcdId + ": begin ror");
- }
- int nb_points = 20;
- double stem_radius = m_cparam.rs_grab_stem_diameter / 2.0;
- if(m_dtype == 0){
- stem_radius = m_cparam.sc_grab_stem_diameter / 2.0;
- }
- double remove_radius = stem_radius * 2.0;
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ror(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror(false);
- ror.setInputCloud(cloud_inbox);
- ror.setRadiusSearch(remove_radius);
- ror.setMinNeighborsInRadius(nb_points);
- ror.filter(*cloud_ror);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": RadiusOutlierRemoval filtered point cloud "
- << cloud_ror->width * cloud_ror->height
- << " data points. param stem_radius="<<
- stem_radius<<", nb_points="<< nb_points<< "(if < 50, return)";
- m_pLogger->INFO(buff.str());
- }
- if (cloud_ror->width * cloud_ror->height < 50) {
- return 1;
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud_ror, std::string("cloud_ror"));
- }
- if (m_pLogger) {
- m_pLogger->INFO(m_pcdId + ": end ror");
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //?? 用截取到的点云,初步找到植株的位置中心
- m_root_centers.clear();
- m_root_center_with_seedling.clear();
- if (m_pStemInfos) {
- m_pStemInfos->get_root_centers(m_root_centers);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": root positions "<< m_root_centers.size()<<" centers\n";
- for (auto& sr : m_root_centers) {
- buff << "\tx=" << sr.root_x << ", y=" << sr.root_y << ", z=" << sr.root_z
- << ", cnt=" << sr.root_count
- << ", pcd_size=" << sr.stem_size << "\n";
- }
- m_pLogger->INFO(buff.str());
- }
- }
-
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //3 原来的降采样没有意义,改成统计平均距离
- m_cloud_mean_dist = 0.0;
- cloud_mean_dist(cloud_ror, m_cloud_mean_dist);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": cloud_mean_dist = " << m_cloud_mean_dist;
- m_pLogger->INFO(buff.str());
- }
- if (m_pSeedlingStatus == 0) {
-
- double x_min = m_cparam.rs_grab_xmin;
- double x_max = m_cparam.rs_grab_xmax;
-
- if (m_dtype == 0) {
- x_min = m_cparam.sc_grab_xmin;
- x_max = m_cparam.sc_grab_xmax;
- }
- m_pSeedlingStatus = new CSeedlingStatus(m_dtype, 5.0, x_min, x_max, m_cloud_mean_dist, m_pLogger);
- std::vector<double>root_cxs;
- for (auto&sr : m_root_centers) {
- root_cxs.push_back(sr.root_x);
- }
- m_pSeedlingStatus->set_x_centers(root_cxs);
- }
- std::vector<int>xhist_inbox;
- get_point_x_hist(xhist_inbox);
- m_pSeedlingStatus->append_hist(xhist_inbox, m_root_center_with_seedling_history);
-
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // 4 对截取的点云进行ror滤除大面积联通区域,剔除叶片
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_dowm_sampled(new pcl::PointCloud<pcl::PointXYZ>);
- std::vector<int> non_leaf_indices;
- std::vector<int> leaf_indices;
- leaf_filter_ror(cloud_ror, non_leaf_indices, leaf_indices);
- pcl::copyPointCloud(*cloud_ror, non_leaf_indices, *cloud_dowm_sampled);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": after leaf_filter dowm_sampled point cloud "
- << cloud_dowm_sampled->width * cloud_dowm_sampled->height << " data points (if < 50, return)";
- m_pLogger->INFO(buff.str());
- }
- if (cloud_dowm_sampled->width * cloud_dowm_sampled->height < 50) {
- return 1;
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //判断m_root_centers位置上是否有叶片遮挡
- occluded_seedling_detect_by_leaf(cloud_ror, leaf_indices);
- //用m_root_center_with_seedling_history对叶子遮挡的结果进行过滤
- /*for (int j = 0; j < m_root_center_with_seedling.size(); ++j) {
- if (m_root_center_with_seedling.at(j) && !m_root_center_with_seedling_history.at(j)) {
- m_root_center_with_seedling.at(j) = false;
- }
- }*/
- m_root_center_with_seedling = m_root_center_with_seedling_history;
-
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //5 seedling position,找到第一个位置上的植株
- std::vector<int> first_seedling_cloud_idx; //存储找到的第一个位置上植株茎上直线点的index
- pcl::PointXYZ xz_center; //存储找到的第一个位置上植株根部坐标
- pcl::ModelCoefficients::Ptr line_model; //存储找到的第一个位置上植株茎直线模型
- if (m_pLogger) {
- m_pLogger->INFO(m_pcdId + ": begin find seedling position");
- }
- int first_row_seedling_number = 0;
- bool fund_seedling = find_seedling_position_key(cloud_dowm_sampled, first_seedling_cloud_idx, xz_center, line_model, first_row_seedling_number);
- if (!fund_seedling && first_row_seedling_number == 0) {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": Not found seedlings" ;
- m_pLogger->INFO(buff.str());
- }
- return 1;
- }
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": after find_seedling_position(), foud first seedling seeds points size " << first_seedling_cloud_idx.size();
- m_pLogger->INFO(buff.str());
- m_pLogger->INFO(m_pcdId + ": end find seedling position");
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //5.1 如果没有找到茎,在root_center 中找一个位置
- pcl::PointXYZ fork_selected_pt;//抓取点坐标,根据茎节点的偏移
- pcl::PointXYZ fork_selected_pt_ref; //返回茎节点,作为抓取点偏的基点
- pcl::PointXYZ rs_grab_pt; //v0.8.8修改砧木抓取位置为固定高度,通过yup和ybt均值确定
- if (!fund_seedling) {
- int selected_center_idx;
- no_seedling_detected_post_process(
- first_row_seedling_number, //input
- selected_center_idx, //output
- fork_selected_pt, //output
- fork_selected_pt_ref, //output
- rs_grab_pt, //output
- posinfo);
- if (selected_center_idx < 0) {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": Not found seedlings after no_seedling_detected_post_process()";
- m_pLogger->INFO(buff.str());
- }
- return 1;
- }
- }
- else {
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //6 nearest seedling grab point selection,找到最接近指定高度的最优抓取点坐标
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_seedling_seed(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud_dowm_sampled, first_seedling_cloud_idx, *cloud_seedling_seed);
- //改进思路:将茎直线上cloud_seedling_seed的点,提取周围邻域xz的宽度,在相同邻域cloud_dowm_sampled点云内提取xz的宽度
- //对比两个宽度,变化很大的,说明周边有异物(叶柄或叶子),不适合作为抓取位置;否则就是抓取位置
- //在众多抓取位置上,选择离指定高度最近的点作为抓取位置
- //
- //显示位置
- if (m_cparam.image_show) {
- std::vector<pcl::PointXYZ> tmp;
- tmp.push_back(xz_center);
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr tttp(new pcl::PointCloud<pcl::PointXYZRGB>);
- pcl::copyPointCloud(*cloud_seedling_seed, *tttp);
- for (auto& pt : *tttp) {
- pt.r = 255;
- pt.g = 255;
- pt.b = 255;
- }
- viewer_cloud_cluster(tttp, tmp, string("first"));
- }
-
- float stem_width_mu;
- float stem_deflection;
- get_optimal_seed_compare(
- cloud_dowm_sampled, //input
- cloud_seedling_seed, //input
- line_model, //input
- fork_selected_pt, //output
- fork_selected_pt_ref, //output
- rs_grab_pt, //output
- stem_width_mu, //output
- stem_deflection //output
- ); //output
- if (fork_selected_pt.z < 0) {
- int selected_center_idx;
- no_seedling_detected_post_process(
- first_row_seedling_number, //input
- selected_center_idx, //output
- fork_selected_pt, //output
- fork_selected_pt_ref, //output
- rs_grab_pt, //output
- posinfo);
- if (selected_center_idx < 0) {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": Not found valid fork point after no_seedling_detected_post_process()";
- m_pLogger->INFO(buff.str());
- }
- return 1;
- }
- }
- else {
- int selected_center_idx;
- had_seedling_detected_post_process(
- first_row_seedling_number, //input
- stem_width_mu, //input
- stem_deflection, //input
- selected_center_idx, //output, 选择root_center的序号
- fork_selected_pt, //input-output, 检测到的目标抓取点
- fork_selected_pt_ref, //input-output, 检测到的目标抓取参考点
- rs_grab_pt,
- posinfo);
- }
-
- if (m_pLogger) {
- m_pLogger->INFO(m_pcdId + ": end get_optimal_seed");
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //7 保存处理结果到图片
- cv::Mat rst_img = cv::Mat::zeros(cv::Size(1280,640),CV_8UC3);
- gen_result_img(cloud_ror, cloud_dowm_sampled, fork_selected_pt, fork_selected_pt_ref, rs_grab_pt, posinfo,rst_img);
- if (m_ppImgSaver && *m_ppImgSaver) {
- (*m_ppImgSaver)->saveImage(rst_img, m_pcdId + "_rst_0");
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //8 页面显示结果
- this->clear_imginfo();
- m_pImginfoResult = mat2imginfo(rst_img);
- posinfo.pp_images[0] = m_pImginfoResult;
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //9 debug 显示结果
- if (m_cparam.image_show) {
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cand_demo(new pcl::PointCloud<pcl::PointXYZRGB>);
- pcl::copyPointCloud(*cloud_dowm_sampled, *cloud_cand_demo);
- for (auto& pt : *cloud_cand_demo) {
- pt.r = 255;
- pt.g = 255;
- pt.b = 255;
- }
- pcl::PointXYZRGB pt_grab = {0,255,0};
- pt_grab.x = fork_selected_pt.x;
- pt_grab.y = fork_selected_pt.y;
- pt_grab.z = fork_selected_pt.z;
- pcl::PointXYZRGB pt_grab_ = { 0,255,120 };
- pt_grab_.x = fork_selected_pt.x;
- pt_grab_.y = fork_selected_pt.y + 0.2;
- pt_grab_.z = fork_selected_pt.z;
- cloud_cand_demo->push_back(pt_grab);
- //viewer_cloud(cloud_cand_demo, std::string("cloud_cand_demo"));
- viewer_cloud_debug(cloud_cand_demo, fork_selected_pt, fork_selected_pt_ref, xz_center, std::string("cloud_cand_demo"));
- imshow_wait("rst_img", rst_img);
- }
- return 0;
- }
- //没有检测到苗的后处理
- void CRootStockGrabPoint::no_seedling_detected_post_process(
- int first_row_seedling_number, //input
- int& selected_idx, //output, 选择root_center的序号
- pcl::PointXYZ& selected_pt, //output
- pcl::PointXYZ& selected_pt_ref, //output
- pcl::PointXYZ& rs_grab_pt, //output
- PositionInfo& posinfo //output
- )
- {
- rs_grab_pt.x = -1000.0;
- rs_grab_pt.y = -1000.0;
- rs_grab_pt.z = -1000.0;
- //m_dtype == 0 找最大x位置, 否则找最小x位置
- selected_idx = -1;
- if (m_dtype == 0) {
- for (int i = 0; i < m_root_center_with_seedling.size(); ++i) {
- if (m_root_center_with_seedling[i]) { selected_idx = i; }
- }
- }
- else {
- for (int i = 0; i < m_root_center_with_seedling.size(); ++i) {
- if (m_root_center_with_seedling[i]) {
- selected_idx = i;
- break;
- }
- }
- }
- if (selected_idx < 0) {
- return;
- }
- double grab_fork_ybt = m_cparam.rs_grab_fork_ybt;
- double grab_offset = m_cparam.rs_grab_offset;
- double grab_seedling_dist = m_cparam.rs_grab_seedling_dist;
- if (m_dtype == 0) {
- grab_fork_ybt = m_cparam.sc_grab_fork_ybt;
- grab_offset = m_cparam.sc_grab_offset;
- grab_seedling_dist = m_cparam.sc_grab_seedling_dist;
- }
- //cx位置, 默认选择穴位中心,如果leaf中心有值,用叶子中心
- double cx = m_root_centers.at(selected_idx).root_x;
- double leaf_cx = m_root_center_leaf_cx.at(selected_idx);
- if (fabs(leaf_cx - cx) < grab_seedling_dist*0.33) {
- cx = leaf_cx;
- }
-
- selected_pt_ref.x = cx;
- selected_pt_ref.y = grab_fork_ybt;
- selected_pt_ref.z = m_root_centers.at(selected_idx).root_z;
- selected_pt = selected_pt_ref;
- selected_pt.y += static_cast<int>(grab_offset);
- //砧木指定y高度上的确定位置
- if (m_dtype == 1) {
- float grab_y = 0.5 * (m_cparam.rs_grab_fork_ybt + m_cparam.rs_grab_fork_yup);
- rs_grab_pt.x = cx;
- rs_grab_pt.y = grab_y;
- rs_grab_pt.z = m_root_centers.at(selected_idx).root_z;
- }
- double stem_width_mu = 0.0;
- double stem_deflection = 0.0;
- if (m_dtype == 0) {
- posinfo.sc_grab_x = selected_pt.x;
- posinfo.sc_grab_y = selected_pt.y;
- posinfo.sc_grab_z = selected_pt.z;
- posinfo.sc_count = (double)first_row_seedling_number;
- posinfo.sc_width = (double)stem_width_mu;
- posinfo.sc_tortuosity = (double)stem_deflection;
- }
- else {
- posinfo.rs_grab_x = rs_grab_pt.x;
- posinfo.rs_grab_y = rs_grab_pt.y;
- posinfo.rs_grab_z = rs_grab_pt.z;
- posinfo.rs_fork_x = selected_pt_ref.x;
- posinfo.rs_fork_y = selected_pt_ref.y;
- posinfo.rs_fork_z = selected_pt_ref.z;
- posinfo.rs_count = (double)first_row_seedling_number;
- posinfo.rs_width = (double)stem_width_mu;
- posinfo.rs_tortuosity = (double)stem_deflection;
- }
- }
- //检测到苗的情况,后处理
- void CRootStockGrabPoint::had_seedling_detected_post_process(
- int first_row_seedling_number, //input
- float stem_width_mu, //input
- float stem_deflection, //input
- int& selected_idx, //output, 选择root_center的序号
- pcl::PointXYZ& selected_pt, //input-output, 检测到的基于茎节抓取点
- pcl::PointXYZ& selected_pt_ref, //input-output, 检测到的茎节点
- pcl::PointXYZ& rs_grab_pt, //input-output, 检测到的目标抓取点
- PositionInfo& posinfo //output
- )
- {
- //通过selected_pt找到对应的gen中心位置
- //0 首选识别到的位置
- if (m_dtype == 0) {
- posinfo.sc_grab_x = selected_pt.x;
- posinfo.sc_grab_y = selected_pt.y;
- posinfo.sc_grab_z = selected_pt.z;
- posinfo.sc_count = (double)first_row_seedling_number;
- posinfo.sc_width = (double)stem_width_mu;
- posinfo.sc_tortuosity = (double)stem_deflection;
- }
- else {
- posinfo.rs_grab_x = rs_grab_pt.x;
- posinfo.rs_grab_y = rs_grab_pt.y;
- posinfo.rs_grab_z = rs_grab_pt.z;
- posinfo.rs_fork_x = selected_pt.x;
- posinfo.rs_fork_y = selected_pt.y;
- posinfo.rs_fork_z = selected_pt.z;
- posinfo.rs_count = (double)first_row_seedling_number;
- posinfo.rs_width = (double)stem_width_mu;
- posinfo.rs_tortuosity = (double)stem_deflection;
- }
- // // 1 找到基于rootcenter应该找的中心位置
- // //m_dtype == 0 找最大x位置, 否则找最小x位置
- // selected_idx = -1;
- // if (m_dtype == 0) {
- // for (int i = 0; i < m_root_center_with_seedling.size(); ++i) {
- // if (m_root_center_with_seedling[i]) { selected_idx = i; }
- // }
- // }
- // else {
- // for (int i = 0; i < m_root_center_with_seedling.size(); ++i) {
- // if (m_root_center_with_seedling[i]) {
- // selected_idx = i;
- // break;
- // }
- // }
- // }
- //
- // if (selected_idx < 0) {
- // //可能没有中心(刚开始工作)
- // //按识别的结果
- // return;
- // }
- //
- // //2 如果识别的位置和rootcenter位置接近,就按识别位置
- // double seedling_distance = m_cparam.rs_grab_seedling_dist;
- // if (m_dtype == 0) {
- // seedling_distance = m_cparam.sc_grab_seedling_dist;
- // }
- // double root_x = m_root_centers.at(selected_idx).root_x;
- // if (m_dtype == 0) {
- // //穗苗找x最大的位置
- // if (selected_pt.x > (root_x - 0.5 * seedling_distance)) {
- // //找到x最大的位置上的苗,识别的苗位置大于有苗的位置,就认为识别结果更可信
- // return;
- // }
- // else {
- // //否则用指定根中心的位置
- // goto obstructed;
- // }
- // }
- // else {
- // //砧木,找x最小的位置
- // if (selected_pt.x < (root_x + 0.5 * seedling_distance)) {
- // //找到x最大的位置上的苗,识别的苗位置大于有苗的位置,就认为识别结果更可信
- // return;
- // }
- // else {
- // //否则用指定根中心的位置
- // goto obstructed;
- // }
- // }
- //
- //obstructed:
- // double grab_fork_ybt = m_cparam.rs_grab_fork_ybt;
- // double grab_offset = m_cparam.rs_grab_offset;
- // if (m_dtype == 0) {
- // grab_fork_ybt = m_cparam.sc_grab_fork_ybt;
- // grab_offset = m_cparam.sc_grab_offset;
- // }
- //
- // //cx位置, 默认选择穴位中心,如果leaf中心有值,用叶子中心
- // double cx = m_root_centers.at(selected_idx).root_x;
- // double leaf_cx = m_root_center_leaf_cx.at(selected_idx);
- // if (fabs(leaf_cx - cx) < seedling_distance*0.33) {
- // cx = leaf_cx;
- // }
- //
- // selected_pt_ref.x = cx;
- // selected_pt_ref.y = grab_fork_ybt;
- // selected_pt_ref.z = m_root_centers.at(selected_idx).root_z;
- // selected_pt = selected_pt_ref;
- // selected_pt.y += static_cast<int>(grab_offset);
- //
- // double stem_width_mu_obstructed = 0.0;
- // double stem_deflection_obstructed = 0.0;
- // if (m_dtype == 0) {
- // posinfo.sc_grab_x = selected_pt.x;
- // posinfo.sc_grab_y = selected_pt.y;
- // posinfo.sc_grab_z = selected_pt.z;
- // posinfo.sc_count = (double)first_row_seedling_number;
- // posinfo.sc_width = stem_width_mu_obstructed;
- // posinfo.sc_tortuosity = stem_deflection_obstructed;
- // }
- // else {
- // posinfo.rs_grab_x = selected_pt.x;
- // posinfo.rs_grab_y = selected_pt.y;
- // posinfo.rs_grab_z = selected_pt.z;
- // posinfo.rs_count = (double)first_row_seedling_number;
- // posinfo.rs_width = stem_width_mu_obstructed;
- // posinfo.rs_tortuosity = stem_deflection_obstructed;
- // }
- //
- }
- //根据历史根的位置,计算对应位置点云数量,进而判断此位置是否有苗
- void CRootStockGrabPoint::occluded_seedling_detect_by_leaf(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //input 输入点云数据
- std::vector<int>& leaf_idx
- )
- {
- //仅用叶子点云数量,有时会出现因叶子误识别(和ror_ratio相关),造成叶子点云数量小,造成误判
- //所以改成整个空间点云数量做判别--2024-3-2
- m_root_center_with_seedling.clear();
- m_root_center_with_seedling.assign(m_root_centers.size(), false);
- m_root_center_leaf_cx.clear();
- m_root_center_leaf_cx.assign(m_root_centers.size(), 1.0e6);
- std::vector<int> pcd_cnt;
- //int th_pcd_size = m_cparam.rs_grab_seedling_min_pts;
- double stem_diameter = m_cparam.rs_grab_stem_diameter;
- double y_min = m_cparam.rs_grab_ymin;
- double y_max = m_cparam.rs_grab_ymax;
- if (m_dtype == 0) {
- //th_pcd_size = m_cparam.sc_grab_seedling_min_pts;
- stem_diameter = m_cparam.sc_grab_stem_diameter;
- y_min = m_cparam.sc_grab_ymin;
- y_max = m_cparam.sc_grab_ymax;
- }
- int th_pcd_size = int(0.333 * stem_diameter * (y_max - y_min) / m_cloud_mean_dist / m_cloud_mean_dist);
- std::vector<pcl::PointXYZ> aabb_mins_maxs;
- int total_cnt, leaf_cnt; //穴位上inbox的点云数量,叶子点云数量
- double total_cx, leaf_cx;//穴位上inbox的点云中位x,叶子点云中位x
- for (int i = 0; i < m_root_centers.size(); ++i) {
- CStemResult& rc = m_root_centers.at(i);
- pcl::PointXYZ aabb_min;
- pcl::PointXYZ aabb_max;
- get_leaf_point_count_inbox(rc, in_cloud, leaf_idx,
- aabb_min, aabb_max,
- total_cnt, leaf_cnt,
- total_cx, leaf_cx);
- double leaf_ratio = 0.0;
- if (total_cnt == 0) {
- leaf_ratio = 0.0;
- }
- else {
- leaf_ratio = double(leaf_cnt) / double(total_cnt);
- }
- if (leaf_ratio > 0.25) {
- m_root_center_leaf_cx.at(i) = leaf_cx;
- }
- else {
- m_root_center_leaf_cx.at(i) = total_cx;
- }
- pcd_cnt.push_back(total_cnt);
- bool has_seedling = total_cnt > th_pcd_size;
- m_root_center_with_seedling.at(i) = has_seedling;
- aabb_mins_maxs.push_back(aabb_min);
- aabb_mins_maxs.push_back(aabb_max);
- }
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": root positions points size [inbox] " << m_root_centers.size() << " centers, size_threshold: "<< th_pcd_size<<"\n";
- for (int i = 0; i < m_root_centers.size();++i) {
- CStemResult& sr = m_root_centers.at(i);
- buff << "\tx=" << sr.root_x << ", z=" << sr.root_z
- << ", stem_pcd_size=" << sr.stem_size
- << ", raw_pcd_size=" << pcd_cnt.at(i) << "\n";
- }
- m_pLogger->INFO(buff.str());
- }
- // 显示
- if (m_cparam.image_show) {
- std::vector<std::vector<int> > clt_line_idx;
- std::vector<pcl::PointXYZ>target_root;
- double ymin = m_cparam.rs_grab_ymin;
- if (m_dtype == 0) { ymin = m_cparam.sc_grab_ymin; }
- for (auto&rc : m_root_centers) {
- pcl::PointXYZ p(rc.root_x, ymin, rc.root_z);
- target_root.push_back(p);
- }
- viewer_cloud_cluster_box(m_raw_cloud, target_root, aabb_mins_maxs, clt_line_idx, std::string("seedling root centers"));
- }
- }
- //int CRootStockGrabPoint::get_point_count_inbox(const CStemResult& sr,
- // pcl::PointXYZ& aabb_min,
- // pcl::PointXYZ& aabb_max)
- //{
- // double seedling_distance = m_cparam.rs_grab_seedling_dist;
- // double min_y = m_cparam.rs_grab_ymin;
- // if (m_dtype == 0) {
- // seedling_distance = m_cparam.sc_grab_seedling_dist;
- // min_y = m_cparam.sc_grab_ymin;
- // }
- // double min_x = sr.root_x - 0.5 * seedling_distance;
- // double max_x = sr.root_x + 0.5 * seedling_distance;
- // double min_z = sr.root_z - 0.75 * seedling_distance;
- // double max_z = sr.root_z + 0.25 * seedling_distance;
- // double max_y = min_y + 150.0; //假定苗高150mm
- // int count = 0;
- // for (auto&pt : m_raw_cloud->points) {
- // if(pt.y >= min_y && pt.y <= max_y &&
- // pt.x >=min_x && pt.x<=max_x &&
- // pt.z >= min_z && pt.z <= max_z)
- // {
- // count++;
- // }
- // }
- // aabb_min.x = min_x;
- // aabb_min.y = min_y;
- // aabb_min.z = min_z;
- // aabb_max.x = max_x;
- // aabb_max.y = max_y;
- // aabb_max.z = max_z;
- // return count;
- //}
- //统计inbox点云在x方向的分布情况
- void CRootStockGrabPoint::get_point_x_hist(
- std::vector<int>& x_hist //output
- )
- {
- double seedling_distance = m_cparam.rs_grab_seedling_dist;
- double x_min = m_cparam.rs_grab_xmin;
- double x_max = m_cparam.rs_grab_xmax;
- double y_min = m_cparam.rs_grab_ymin;
- double y_max = y_min + 150.0;
- double z_min = m_cparam.rs_grab_zmin - seedling_distance;
- double z_max = m_cparam.rs_grab_zmax + seedling_distance/4.0;
- if (m_dtype == 0) {
- //穗苗
- seedling_distance = m_cparam.sc_grab_seedling_dist;
- x_min = m_cparam.sc_grab_xmin;
- x_max = m_cparam.sc_grab_xmax;
- y_min = m_cparam.sc_grab_ymin;
- y_max = y_min + 150.0;
- z_min = m_cparam.sc_grab_zmin - seedling_distance;
- z_max = m_cparam.sc_grab_zmax;
- }
- double binw = 5;
- int x0 = int(x_min);
- int x1 = int(x_max);
- int h_size = int((x1 - x0)/binw);
- int idx = 0;
- x_hist.assign(h_size, 0);
- for (auto&pt : m_raw_cloud->points) {
- if(pt.y >= y_min && pt.y < y_max &&
- pt.x >=x_min && pt.x < x_max &&
- pt.z >= z_min && pt.z < z_max)
- {
- idx = int((pt.x - x0) / binw);
- x_hist.at(idx)++;
- }
- }
- //显示结果
- if (m_cparam.image_show) {
- pcl::visualization::PCLVisualizer viewer(m_pcdId + std::string(": x histogram"));
- viewer.setBackgroundColor(0.35, 0.35, 0.35);
- viewer.addCoordinateSystem();
- viewer.addPointCloud<pcl::PointXYZ>(m_raw_cloud, "raw_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "raw_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "raw_cloud");
- viewer.addCube(x_min, x_max, y_min, y_max, z_min, z_max, 0.75, 0.0, 0.0, "AABB_");
- viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION,
- pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB_");
- pcl::PointXYZ px0, px1, py1, pz1;
- px0.x = 0;
- px0.y = 0;
- px0.z = 0;
- px1.x = 10.0;
- px1.y = 0;
- px1.z = 0;
- py1.x = 0;
- py1.y = 10.0;
- py1.z = 0;
- pz1.x = 0;
- pz1.y = 0;
- pz1.z = 10.0;
- viewer.addLine(px0, px1, 255, 0, 0, "x");
- viewer.addLine(px0, py1, 0, 255, 0, "y");
- viewer.addLine(px0, pz1, 0, 0, 255, "z");
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- }
- void CRootStockGrabPoint::get_leaf_point_count_inbox(
- const CStemResult& sr,//input
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //input 输入点云数据
- std::vector<int>& leaf_idx, //input
- pcl::PointXYZ& aabb_min,//output
- pcl::PointXYZ& aabb_max,//output
- int& total_cnt, //output
- int& leaf_cnt, //output
- double& total_cx, //output
- double& leaf_cx //output
- )
- {
- //计算每一个穴位叶子遮挡的点云数量(以及整体点云数量),并计算x方向的中心
- double seedling_distance = m_cparam.rs_grab_seedling_dist;
- double min_y = m_cparam.rs_grab_ymin;
- double max_y = m_cparam.rs_grab_ymax;
- if (m_dtype == 0) {
- seedling_distance = m_cparam.sc_grab_seedling_dist;
- min_y = m_cparam.sc_grab_ymin;
- max_y = m_cparam.sc_grab_ymax;
- }
- double min_x = sr.root_x - 0.5 * seedling_distance;
- double max_x = sr.root_x + 0.5 * seedling_distance;
- double min_z = sr.root_z - 0.75 * seedling_distance;
- double max_z = sr.root_z + 0.25 * seedling_distance;
- aabb_min.x = min_x;
- aabb_min.y = min_y;
- aabb_min.z = min_z;
- aabb_max.x = max_x;
- aabb_max.y = max_y;
- aabb_max.z = max_z;
- total_cnt = 0;
- leaf_cnt = 0;
- total_cx = 1.0e6;
- leaf_cx = 1.0e6;
- std::vector<double>xs;
- for (auto&pt : in_cloud->points) {
- if (pt.y >= min_y && pt.y <= max_y &&
- pt.x >= min_x && pt.x <= max_x &&
- pt.z >= min_z && pt.z <= max_z)
- {
- total_cnt++;
- xs.push_back(pt.x);
- }
- }
- if (total_cnt == 0) { return; }
- int med_idx = int(0.5 * xs.size());
- std::sort(xs.begin(), xs.end());
- total_cx = xs.at(med_idx);
- //leaf center
- xs.clear();
- for (auto&i : leaf_idx) {
- pcl::PointXYZ& pt = in_cloud->points.at(i);
- if (pt.y >= min_y && pt.y <= max_y &&
- pt.x >= min_x && pt.x <= max_x &&
- pt.z >= min_z && pt.z <= max_z)
- {
- leaf_cnt++;
- xs.push_back(pt.x);
- }
- }
- if (leaf_cnt == 0) { return; }
- med_idx = int(0.5 * xs.size());
- std::sort(xs.begin(), xs.end());
- leaf_cx = xs.at(med_idx);
- return;
- }
- //生成结果图片
- void CRootStockGrabPoint::gen_result_img(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud_raw,//输入,未经过滤的整体点云in_cloud_raw,
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //输入,整体点云cloud_dowm_sampled,
- pcl::PointXYZ& selected_pt, //输入,selected_pt,
- pcl::PointXYZ& selected_pt_ref, //输入,selected_pt_ref,
- pcl::PointXYZ& rs_grab_pt, //输入,砧木固定抓取点,
- const PositionInfo& posinfo, //输入,
- cv::Mat& rst_img //输出,图片, 640*1280
- )
- {
- if (rst_img.empty()) { return; }
- if (rst_img.rows != 640 && rst_img.cols != 1280) { return; }
- int cx = 640; //图像中心点0
- int cy = 320; //图像中心点0
- float res = 0.33333; //分辨率,1个像素0.333mm
- //绘制坐标轴
- int arrow_len = 20;
- cv::line(rst_img, cv::Point(0, cy), cv::Point(cx, cy), cv::Scalar(128,128,128));
- cv::line(rst_img, cv::Point(0, cy), cv::Point(arrow_len, cy - int(arrow_len/2)), cv::Scalar(128, 128, 128));
- cv::line(rst_img, cv::Point(0, cy), cv::Point(arrow_len, cy + int(arrow_len/2)), cv::Scalar(128, 128, 128));
- cv::line(rst_img, cv::Point(cx, 0), cv::Point(cx, cy), cv::Scalar(128, 128, 128));
- cv::line(rst_img, cv::Point(cx, 0), cv::Point(cx - int(arrow_len/2), arrow_len), cv::Scalar(128, 128, 128));
- cv::line(rst_img, cv::Point(cx, 0), cv::Point(cx + int(arrow_len/2), arrow_len), cv::Scalar(128, 128, 128));
- cv::putText(rst_img, std::string("x"), cv::Point(20, cy-10), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(128, 128, 128));
- cv::putText(rst_img, std::string("y"), cv::Point(cx+10, 20), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(128, 128, 128));
-
- //绘制所有点
- int x, y;
- for (auto&pt : in_cloud_raw->points) {
- x = cx - int(pt.x / res + 0.5);
- y = cy - int(pt.y / res + 0.5);
- if (x < 0 || x >= rst_img.cols) { continue; }
- if (y < 0 || y >= rst_img.rows) { continue; }
- rst_img.at<cv::Vec3b>(y, x)[0] = 60;
- rst_img.at<cv::Vec3b>(y, x)[1] = 20;
- rst_img.at<cv::Vec3b>(y, x)[2] = 220;
- }
- for (auto&pt : in_cloud->points) {
- x = cx - int(pt.x / res + 0.5);
- y = cy - int(pt.y / res + 0.5);
- if (x < 0 || x >= rst_img.cols) { continue; }
- if (y < 0 || y >= rst_img.rows) { continue; }
- rst_img.at<cv::Vec3b>(y, x)[0] = 0;
- rst_img.at<cv::Vec3b>(y, x)[1] = 225;
- rst_img.at<cv::Vec3b>(y, x)[2] = 0;
- }
- //绘制抓取点坐标
- int grab_x = cx - int(selected_pt.x / res + 0.5);
- int grab_y = cy - int(selected_pt.y / res + 0.5);
- int radius = 30;
- if (m_dtype == 1) {
- //如果是砧木,固定y值的抓取点
- grab_x = cx - int(rs_grab_pt.x / res + 0.5);
- grab_y = cy - int(rs_grab_pt.y / res + 0.5);
- }
- cv::line(rst_img, cv::Point(grab_x - radius, grab_y - radius), cv::Point(grab_x + radius, grab_y + radius), cv::Scalar(0, 215, 255));
- cv::line(rst_img, cv::Point(grab_x - radius, grab_y + radius), cv::Point(grab_x + radius, grab_y - radius), cv::Scalar(0, 215, 255));
- //如果是遮挡,画一个圆
- if ((m_dtype == 0 && posinfo.sc_width == 0) || (m_dtype == 1 && posinfo.rs_width == 0)) {
- cv::circle(rst_img, cv::Point(grab_x, grab_y), radius, cv::Scalar(0, 215, 255));
- }
- //绘制茎节点坐标
- int fork_x = cx - int(selected_pt_ref.x / res + 0.5);
- int fork_y = cy - int(selected_pt_ref.y / res + 0.5);
- radius = 15;
- cv::line(rst_img, cv::Point(fork_x - radius, fork_y), cv::Point(fork_x + radius, fork_y), cv::Scalar(153, 51, 255));
- //在图片中写入文件名字
- cv::putText(rst_img, m_pcdId, cv::Point(20, 20), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(128, 128, 128));
-
-
- }
- int CRootStockGrabPoint::read_ply_file(const char* fn)
- {
- m_raw_cloud.reset( new pcl::PointCloud<pcl::PointXYZ>);
- if (pcl::io::loadPLYFile<pcl::PointXYZ>(fn, *m_raw_cloud) == -1) {
- if (m_pLogger) {
- m_pLogger->ERRORINFO(m_pcdId + ": could not load file: "+std::string(fn));
- }
- return (-1);
- }
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": load raw point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
- m_pLogger->INFO(buff.str());
- }
- return m_raw_cloud->width * m_raw_cloud->height;
- }
- double CRootStockGrabPoint::compute_nearest_neighbor_distance(pcl::PointCloud<pcl::PointXYZ>::Ptr pcd)
- {
- pcl::KdTreeFLANN<pcl::PointXYZ> tree;
- tree.setInputCloud(pcd);
- int k = 2;
- double res = 0.0;
- int n_points = 0;
- for (size_t i = 0; i < pcd->size(); ++i) {
- std::vector<int> idx(k);
- std::vector<float> sqr_distances(k);
- if (tree.nearestKSearch(i, k, idx, sqr_distances) == k) {
- for (int id = 1; id < k; ++id) {
- res += sqrt(sqr_distances.at(id));
- ++n_points;
- }
- }
- }
- if (n_points > 0) {
- res /= (double)n_points;
- }
- return res;
- }
-
- ////////////////////////////////////////////////////////////
- //叶子剔除, 假设叶子和茎是分离的,用欧式聚类分割
- void CRootStockGrabPoint::leaf_filter(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //输入,降采样的点云
- std::vector<int> &stem_cloud_idx //输出,除了叶子的点云序号
- )
- {
- //采用欧式距离聚类,对每一类的点云进行分析,剔除叶子
- stem_cloud_idx.clear();
- std::vector<pcl::PointIndices> cluster_indices;
- pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
- tree->setInputCloud(in_cloud);
-
- pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
- ec.setClusterTolerance(2.5);
- ec.setMinClusterSize(30);
- ec.setMaxClusterSize(20000);
- ec.setSearchMethod(tree);
- ec.setInputCloud(in_cloud);
- ec.extract(cluster_indices);
-
- for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin();
- it != cluster_indices.end(); ++it) {
- pcl::PointCloud<pcl::PointXYZ>::Ptr cluster_cloud(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*in_cloud, *it, *cluster_cloud);
- //计算点云的pca
- Eigen::Vector4f pcaCenteroid;
- pcl::compute3DCentroid(*cluster_cloud, pcaCenteroid);
- Eigen::Matrix3f covariance;
- pcl::computeCovarianceMatrix(*cluster_cloud, pcaCenteroid, covariance);
- Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
- Eigen::Vector3f eigenValuesPCA = eigen_solver.eigenvalues();
- float e1, e2, e3;
- e1 = std::sqrt(eigenValuesPCA(2));
- e2 = std::sqrt(eigenValuesPCA(1));
- e3 = std::sqrt(eigenValuesPCA(0));
- float a1d = (e1 - e2) / e1;
- float a2d = (e2 - e3) / e1;
- float a3d = e3 / e1;
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": ads=(" << a1d << "," << a2d << "," << a3d << "), pca_eigem_values=(" << e1
- << "," << e2 << "," << e3 << "), cluster_size=" << it->indices.size();
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- if (a1d < 0.75) {
- viewer_cloud(cluster_cloud, string("cluster_leaf"));
- }
- else {
- viewer_cloud(cluster_cloud, string("cluster_stem"));
- }
- }
- /*
- 特征值归一化处理: a1d = (e1 - e2) / e1
- a2d = (e2 - e3) / e1
- a3d = e3 / e1
-
- ei = sqrt(lamda_i)
-
- 当点云线状分布时,a1d = 1, a2d = 0, a3d = 0
- 当点云面状分布时,a1d = 0, a2d = 1, a3d = 0
- 当点云球状分布时,a1d = 0, a2d = 0, a3d = 1
- */
- if (a1d < 0.75) { continue; }
- for (int idx : it->indices) {
- stem_cloud_idx.push_back(idx);
- }
- }
- }
- // 基于孤立点滤除的方法检测叶子区域
- void CRootStockGrabPoint::leaf_filter_ror(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //input 输入点云数据
- std::vector<int> &stem_cloud_idx, //output, 过滤后的点云序号
- std::vector<int>& leaf_idx //output, 叶子的点云序号
- )
- {
- //计算点云平均间距
- //double mean_dist = 0.0;
- //cloud_mean_dist(in_cloud, mean_dist);
- //计算点云过滤半径和点数阈值
- double stem_diameter = m_cparam.rs_grab_stem_diameter;
- if (m_dtype == 0) { stem_diameter = m_cparam.sc_grab_stem_diameter; }
- double remove_radius = stem_diameter;
- double ror_ratio = m_cparam.rs_grab_ror_ratio;
- if (m_dtype == 0){ror_ratio = m_cparam.sc_grab_ror_ratio;}
- int nb_points = ror_ratio* stem_diameter * stem_diameter * 2.0 / m_cloud_mean_dist / m_cloud_mean_dist; // (2d*d + pi *d*d) /2
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": ror_ratio=" << ror_ratio << ", ror filter nb_points=" << nb_points;
- m_pLogger->INFO(buff.str());
- }
- //获取叶片的点云
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_leaf(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror(true);
- ror.setInputCloud(in_cloud);
- ror.setRadiusSearch(remove_radius);
- ror.setMinNeighborsInRadius(nb_points);
- ror.filter(*cloud_leaf);
- //通过叶片点云寻找附近remove_radius内的近邻点,当做叶子点云序号
- std::set<int> leaf_idx_set;
- int nres;
- std::vector<int> indices;
- std::vector<float> sqr_distances;
- pcl::search::KdTree<pcl::PointXYZ> tree;
- tree.setInputCloud(in_cloud);
- for (size_t i = 0; i < cloud_leaf->size(); ++i)
- {
- nres = tree.radiusSearch(cloud_leaf->points.at(i), remove_radius, indices, sqr_distances);
- for (int& idx : indices) {
- leaf_idx_set.insert(idx);
- }
- }
- leaf_idx.clear();
- leaf_idx.assign(leaf_idx_set.begin(), leaf_idx_set.end());
- //in_img是经过开运算的图像,其中像素位置的点云为叶子区域
- std::vector<int>::iterator lit;
- for (int i = 0; i < in_cloud->points.size(); ++i) {
- lit = std::find(leaf_idx.begin(), leaf_idx.end(), i);
- if (lit == leaf_idx.end()) {
- stem_cloud_idx.push_back(i);
- }
- }
- //显示开运算的结果
- if (m_cparam.image_show) {
- pcl::PointCloud<pcl::PointXYZ>::Ptr stem_cloud(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::PointCloud<pcl::PointXYZ>::Ptr leaf_cloud(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*in_cloud, stem_cloud_idx, *stem_cloud);
- pcl::copyPointCloud(*in_cloud, leaf_idx, *leaf_cloud);
- pcl::visualization::PCLVisualizer viewer("open cloud");
- viewer.addCoordinateSystem();
- viewer.addPointCloud<pcl::PointXYZ>(stem_cloud, "stem_cloud");//????????????????
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "stem_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "stem_cloud");
- viewer.addPointCloud<pcl::PointXYZ>(leaf_cloud, "leaf_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 0, 0, "leaf_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "leaf_cloud");
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- }
- void CRootStockGrabPoint::cloud_mean_dist(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //input 输入点云数据
- double& mean_dist
- )
- {
- mean_dist = 0.0;
- int n_points = 0;
- int nres;
- std::vector<int> indices(2);
- std::vector<float> sqr_distances(2);
- pcl::search::KdTree<pcl::PointXYZ> tree;
- tree.setInputCloud(in_cloud);
- std::vector<double> distances;
- double dist;
- for (size_t i = 0; i < in_cloud->size(); ++i)
- {
- //Considering the second neighbor since the first is the point itself.
- nres = tree.nearestKSearch(i, 2, indices, sqr_distances);
- if (nres == 2)
- {
- dist = std::sqrt(sqr_distances[1]);
- mean_dist += dist;
- ++n_points;
- distances.push_back(dist);
- }
- }
- std::sort(distances.begin(), distances.end());
- int per10 = int(distances.size() * 0.1);
- mean_dist = distances.at(per10);
- }
- //////////////////////////////////////////////////////////////////////////////////////////
- void CRootStockGrabPoint::gen_all_seedling_positions(
- pcl::PointXYZ&key_center, //输入,已知的苗的坐标
- std::vector<pcl::PointXYZ>&candidate_center //输出,有倾斜苗的坐标
- )
- {
- //生成所有的植株位置,并排序
- candidate_center.clear();
-
- //找到z最小的那一株,并找出和它一排的那些
- float step_harf = m_cparam.rs_grab_seedling_dist / 2.0;
- float xmin = m_cparam.rs_grab_xmin;
- float xmax = m_cparam.rs_grab_xmax;
- float zmin = m_cparam.rs_grab_zmin;
- float zmax = m_cparam.rs_grab_zmax;
- int col_from = -8;
- int col_to = 8;
- int col_step = 1;
- if (m_dtype == 0) {
- step_harf = m_cparam.sc_grab_seedling_dist / 2.0;
- xmin = m_cparam.sc_grab_xmin;
- xmax = m_cparam.sc_grab_xmax;
- zmin = m_cparam.sc_grab_zmin;
- zmax = m_cparam.sc_grab_zmax;
- }
- // 生成所有可能的植株位置中心点
- for (int row = -8; row <= 4; row += 1) {
- float cz = key_center.z + row * step_harf/2.0;
- if (cz < zmin || cz > zmax) { continue; }
- for (int col = 4*col_from; col <= 4*col_to; col += col_step) {
- float cx = key_center.x + col * step_harf/2;
- if (cx < xmin || cx > xmax) { continue; }
- //保存
- pcl::PointXYZ pc(cx, 0.0, cz);
- candidate_center.push_back(pc);
- }
- }
- }
- void CRootStockGrabPoint::nms_box(
- std::vector<pcl::PointXYZ>&clt_root_v,
- std::vector<float>&valid_box_cc_dist,
- float hole_step_radius,
- std::vector<pcl::PointXYZ>& target_toot)
- {
- target_toot.clear();
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
- for (auto&p : clt_root_v) { cloud->points.push_back(p); }
-
- pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
- kdtree.setInputCloud(cloud);
- std::vector<int>idx;
- std::vector<float>dist_sqr;
- std::vector<int> tar_idx;
- for (size_t i = 0; i < cloud->points.size(); ++i) {
- int k = kdtree.radiusSearch(cloud->points.at(i), hole_step_radius, idx, dist_sqr);
- std::vector<float> cc_tmp;
- for (auto& j : idx) { cc_tmp.push_back(valid_box_cc_dist.at(j)); }
- int min_id = std::min_element(cc_tmp.begin(), cc_tmp.end()) - cc_tmp.begin();
- if (min_id == 0) {
- tar_idx.push_back(i);
- }
- }
- for (auto& i : tar_idx) {
- target_toot.push_back(clt_root_v.at(i));
- }
- }
- //通过指定位置内,取部分点云分析是否存在真正的茎,真茎位置保存到target_filtered
- void CRootStockGrabPoint::line_filter(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //输入点云
- float radius, //输入,取点半径
- float ymin,
- float ymax,
- std::vector<pcl::PointXYZ>&target_root, //输入,位置
- std::vector<pcl::PointXYZ>&target_filtered, //输出,位置
- std::vector<pcl::PointXYZ>&target_filtered_root, //输出,茎上根部点坐标
- std::vector<std::vector<int>>&target_filtered_element, //输出,茎上点index
- std::vector<pcl::ModelCoefficients::Ptr>& target_filtered_models//输出,茎直线模型
- )
- {
- target_filtered.clear();
- target_filtered_element.clear();
- target_filtered_root.clear();
- if (target_root.size() == 0) { return; }
- for (auto&p : target_root) {
- // 构建box,获取植株点云
- pcl::PointCloud<pcl::PointXYZ>::Ptr seedling_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- std::vector<int>inbox_idx;
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = p.x - radius;
- min_point_aabb_ex.y = ymin;
- min_point_aabb_ex.z = p.z - radius;
- max_point_aabb_ex.x = p.x + radius;
- max_point_aabb_ex.y = ymax;
- max_point_aabb_ex.z = p.z + radius;
- box_filter.setMin(Eigen::Vector4f(min_point_aabb_ex.x, min_point_aabb_ex.y, min_point_aabb_ex.z, 1));
- box_filter.setMax(Eigen::Vector4f(max_point_aabb_ex.x, max_point_aabb_ex.y, max_point_aabb_ex.z, 1));
- box_filter.setNegative(false);
- box_filter.setInputCloud(in_cloud);
- box_filter.filter(inbox_idx);
- pcl::copyPointCloud(*in_cloud, inbox_idx, *seedling_inbox);
- //植株点云直线查找
- //找到inbox点云中的直线
- float stem_radius = m_cparam.rs_grab_stem_diameter / 2.0;
- if (m_dtype == 0) {
- stem_radius = m_cparam.sc_grab_stem_diameter / 2.0;
- }
- pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
- pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
- pcl::SACSegmentation<pcl::PointXYZ> seg;
- seg.setOptimizeCoefficients(true);
- seg.setModelType(pcl::SACMODEL_LINE);
- seg.setDistanceThreshold(stem_radius);
- seg.setInputCloud(seedling_inbox);
- seg.segment(*inliers, *coefficients);
- pcl::PointCloud<pcl::PointXYZ>::Ptr stem_cloud(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*seedling_inbox, *inliers, *stem_cloud);
- //点数过滤
- int min_stem_pts = m_cparam.rs_grab_stem_min_pts;
- if (m_dtype == 0) { min_stem_pts = m_cparam.sc_grab_stem_min_pts; }
- if (inliers->indices.size() < int(min_stem_pts / 2)) { continue; }
- //y方向分布范围滤波
- float y_length_th = 10.0;
- pcl::PointXYZ min_v;
- pcl::PointXYZ max_v;
- pcl::getMinMax3D(*stem_cloud, min_v, max_v);
- float dy = max_v.y - min_v.y;
- if (dy<y_length_th && dy / (ymax - ymin) < 0.25) { continue; }
- //y方向分布中心滤波
- float dy_c = 0.5*(max_v.y + min_v.y);
- if ((dy_c - ymin) / (ymax - ymin) > 0.75) { continue; }
- //倾斜角度过滤
- float xz = std::sqrt(coefficients->values.at(3) * coefficients->values.at(3) +
- coefficients->values.at(5) * coefficients->values.at(5));
- float a = std::atan2f(coefficients->values.at(4), xz);
- a = std::fabs(a) * 180.0 / 3.14159;
- if (a < 45.0) { continue; }
- target_filtered.push_back(p);
- //有效茎长计算
- std::vector<int> stem_y_count_hist;
- get_line_project_hist(stem_cloud, coefficients, stem_y_count_hist);
- std::vector<int> stem_y_count_hist_valid;
- for (auto&v : stem_y_count_hist) {
- if (v > 2) {
- stem_y_count_hist_valid.push_back(v);
- }
- }
- double valid_mu = get_hist_mean(stem_y_count_hist_valid);
- int cnt_th = static_cast<int>(valid_mu/2.0);
- if (cnt_th < 3) { cnt_th = 2; }
- float valid_length = 0.0;
-
- std::vector<int> stem_y_mask;
- for (auto& c : stem_y_count_hist) {
- if (c > cnt_th) {
- valid_length += 1.0;
- stem_y_mask.push_back(1);
- }
- else {
- stem_y_mask.push_back(0);
- }
- }
- //填补空
- for (int i = 1; i < stem_y_mask.size() - 1; ++i) {
- if (stem_y_mask.at(i) == 0 && stem_y_mask.at(i - 1) == 1 && stem_y_mask.at(i + 1) == 1) {
- stem_y_mask.at(i) = 1;
- }
- }
- //找出最长的连续段的长度
- int longest_segment = 0;
- int start = 0;
- for (int i = 0; i < stem_y_mask.size(); ++i) {
- if (i == 0 ) {
- if (stem_y_mask.at(i) == 1) {
- start = i;
- }
- continue;
- }
-
-
- if (i == stem_y_mask.size() - 1 ) {
- if (stem_y_mask.at(i) == 1) {
- int length = i - start + 1;
- if (length > longest_segment) { longest_segment = length; }
- }
- continue;
- }
- if (stem_y_mask.at(i - 1) == 0 && stem_y_mask.at(i) == 1) {
- start = i;
- continue;
- }
- if (stem_y_mask.at(i - 1) == 1 && stem_y_mask.at(i) == 0) {
- int length = i - start;
- if (length > longest_segment) { longest_segment = length; }
- continue;
- }
-
- }
- if (longest_segment<10.0 && valid_length / (ymax - ymin) < 0.35) { continue; }
- float min_y = 10000.0;
- int min_y_idx = -1;
- for (size_t j = 0; j < stem_cloud->points.size();++j) {
- pcl::PointXYZ &spt = stem_cloud->at(j);
- if (spt.y < min_y) {
- min_y = spt.y;
- min_y_idx = j;
- }
- }
- pcl::PointXYZ tr_pt(stem_cloud->points.at(min_y_idx).x, stem_cloud->points.at(min_y_idx).y, stem_cloud->points.at(min_y_idx).z);
- target_filtered_root.push_back(tr_pt);
-
- int idx_raw = 0;
- std::vector<int> out_idx;
- for (auto& idx : inliers->indices) {
- idx_raw = inbox_idx.at(idx);
- out_idx.push_back(idx_raw);
- }
- target_filtered_element.push_back(out_idx);
- target_filtered_models.push_back(coefficients);
-
- // debug show
- /*if (m_cparam.image_show) {
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_line(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*seedling_inbox, *inliers, *cloud_line);
- pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("line in cluster"));
- viewer->addPointCloud<pcl::PointXYZ>(seedling_inbox, "cluster");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "cluster");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cluster");
- viewer->addPointCloud(cloud_line, "fit_line");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0, 1, 0, "fit_line");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "fit_line");
- while (!viewer->wasStopped()) {
- viewer->spinOnce(100);
- }
- }*/
- }
- }
- bool CRootStockGrabPoint::find_seedling_position_key(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- std::vector<int> &first_seedling_cloud_idx,
- pcl::PointXYZ&xz_center,
- pcl::ModelCoefficients::Ptr& line_model,
- int& first_row_size
- )
- {
- first_row_size = 0;
- // 确定植株inbox范围
- float hole_step = m_cparam.rs_grab_seedling_dist - 5.0; //穴盘中穴间距
- if (m_dtype == 0) {
- hole_step = m_cparam.sc_grab_seedling_dist - 5.0;
- }
- float hole_step_radius = hole_step / 2.0;
- // 点云降维到xz平面,y=0
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*in_cloud, *cloud2d);
- for (auto&pt : *cloud2d) {
- pt.y = 0.0;
- }
- // 在xz平面内统计点的密度
- double radius = m_cparam.rs_grab_stem_diameter;
- if (m_dtype == 0) {
- radius = m_cparam.sc_grab_stem_diameter;
- }
- std::vector<int> counter;
- pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
- kdtree.setInputCloud(cloud2d);
- std::vector<int>idx;
- std::vector<float>dist_sqr;
- for (size_t i = 0; i < cloud2d->points.size(); ++i) {
- int k = kdtree.radiusSearch(cloud2d->points.at(i), radius, idx, dist_sqr);
- counter.push_back(k);
- }
- int max_density_idx = std::max_element(counter.begin(), counter.end()) - counter.begin();
- int max_density = counter.at(max_density_idx);
-
- if (m_cparam.image_show) {
- //显示密度最大的点的位置
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_tmp(new pcl::PointCloud<pcl::PointXYZRGB>);
- pcl::copyPointCloud(*in_cloud, *cloud_tmp);
- for (auto& pt : *cloud_tmp) {
- pt.r = 255;
- pt.g = 255;
- pt.b = 255;
- }
- std::vector<pcl::PointXYZ>cc;
- cc.push_back(in_cloud->points.at(max_density_idx));
- viewer_cloud_cluster(cloud_tmp, cc, string("key"));
- }
- // 生成植株的中心及box
- std::vector<pcl::PointXYZ>clt_root;
- std::vector<pcl::PointXYZ> clt_box;
- float ymin = m_cparam.rs_grab_ymin;
- float ymax = m_cparam.rs_grab_ymax;
- if (m_dtype == 0) {
- ymin = m_cparam.sc_grab_ymin;
- ymax = m_cparam.sc_grab_ymax;
- }
- gen_all_seedling_positions(in_cloud->points.at(max_density_idx), clt_root);
- // 显示生成的每一个候选框
- /*if (m_cparam.image_show) {
- std::vector<std::vector<int> > clt_line_idx;
- std::vector<pcl::PointXYZ> clt_root_v;
- std::vector<pcl::PointXYZ> clt_box_v;
- for (auto&p : clt_root) {
- pcl::PointXYZ p_show(p.x, ymin, p.z);
- clt_root_v.push_back(p_show);
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = p.x - hole_step_radius;
- min_point_aabb_ex.y = ymin;
- min_point_aabb_ex.z = p.z - hole_step_radius;
- max_point_aabb_ex.x = p.x + hole_step_radius;
- max_point_aabb_ex.y = ymax;
- max_point_aabb_ex.z = p.z + hole_step_radius;
- clt_box_v.push_back(min_point_aabb_ex);
- clt_box_v.push_back(max_point_aabb_ex);
- }
- viewer_cloud_cluster_box(in_cloud, clt_root_v, clt_box_v, clt_line_idx, std::string("candidate_box"));
- }*/
- // 每个位置点云情况,过滤
- std::vector<int> valid_index; //初步有效的矩形index
- std::vector<int> valid_box_pts; //立方体内点云数量
- std::vector<float>valid_box_cc_dist;//重心和矩形中心距离
- for (size_t i = 0; i < clt_root.size();++i) {
- pcl::PointXYZ &p = clt_root.at(i);
- pcl::PointCloud<pcl::PointXYZ>::Ptr seedling_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- std::vector<int>inbox_idx;
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = p.x - hole_step_radius;
- min_point_aabb_ex.y = ymin;
- min_point_aabb_ex.z = p.z - hole_step_radius;
- max_point_aabb_ex.x = p.x + hole_step_radius;
- max_point_aabb_ex.y = ymax;
- max_point_aabb_ex.z = p.z + hole_step_radius;
- box_filter.setMin(Eigen::Vector4f(min_point_aabb_ex.x, min_point_aabb_ex.y, min_point_aabb_ex.z, 1));
- box_filter.setMax(Eigen::Vector4f(max_point_aabb_ex.x, max_point_aabb_ex.y, max_point_aabb_ex.z, 1));
- box_filter.setNegative(false);
- box_filter.setInputCloud(in_cloud);
- box_filter.filter(inbox_idx);
- pcl::copyPointCloud(*in_cloud, inbox_idx, *seedling_inbox);
- //点数过滤
- if (inbox_idx.size() < int(max_density/3)) { continue; }
- //y方向分布范围滤波
- pcl::PointXYZ min_v;
- pcl::PointXYZ max_v;
- pcl::getMinMax3D(*seedling_inbox, min_v, max_v);
- float dy = max_v.y - min_v.y;
- if (dy / (ymax - ymin) < 0.35) { continue; }
- //y方向分布中心滤波
- float dy_c = 0.5*(max_v.y + min_v.y);
- if ((dy_c-ymin) / (ymax - ymin) > 0.75) { continue; }
- //计算中心
- Eigen::Vector4f mean;
- pcl::compute3DCentroid(*seedling_inbox, mean);
- double cc_dist = std::sqrt((mean[0] - p.x)*(mean[0] - p.x) + (mean[2] - p.z)*(mean[2] - p.z));
- valid_index.push_back(i);
- valid_box_pts.push_back(inbox_idx.size());
- valid_box_cc_dist.push_back((float)cc_dist);
- }
- // 找到局部最大值,找出真正的位置
- std::vector<pcl::PointXYZ> clt_root_v;
- std::vector<pcl::PointXYZ> clt_box_v;
- for (auto&i : valid_index) {
- pcl::PointXYZ&p = clt_root.at(i);
- pcl::PointXYZ p_show(p.x, ymin, p.z);
- clt_root_v.push_back(p_show);
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = p.x - hole_step_radius;
- min_point_aabb_ex.y = ymin;
- min_point_aabb_ex.z = p.z - hole_step_radius;
- max_point_aabb_ex.x = p.x + hole_step_radius;
- max_point_aabb_ex.y = ymax;
- max_point_aabb_ex.z = p.z + hole_step_radius;
- clt_box_v.push_back(min_point_aabb_ex);
- clt_box_v.push_back(max_point_aabb_ex);
- }
- // 显示
- if (m_cparam.image_show) {
- std::vector<std::vector<int> > clt_line_idx;
- viewer_cloud_cluster_box(in_cloud, clt_root_v, clt_box_v, clt_line_idx, std::string("valid_box"));
- }
- std::vector<pcl::PointXYZ> target_root;
- nms_box(clt_root_v, valid_box_cc_dist, hole_step_radius, target_root);
-
- // 显示
- if (m_cparam.image_show) {
- std::vector<std::vector<int> > clt_line_idx;
- std::vector<pcl::PointXYZ>clt_box_tmp;
- for (auto&p : target_root) {
- pcl::PointXYZ p_show(p.x, ymin, p.z);
- clt_root_v.push_back(p_show);
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = p.x - hole_step_radius;
- min_point_aabb_ex.y = ymin;
- min_point_aabb_ex.z = p.z - hole_step_radius;
- max_point_aabb_ex.x = p.x + hole_step_radius;
- max_point_aabb_ex.y = ymax;
- max_point_aabb_ex.z = p.z + hole_step_radius;
- clt_box_tmp.push_back(min_point_aabb_ex);
- clt_box_tmp.push_back(max_point_aabb_ex);
- }
- viewer_cloud_cluster_box(in_cloud, target_root, clt_box_tmp, clt_line_idx, std::string("nms_box"));
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////
- // 根据得到的位置,直线检测,并过滤
- std::vector<pcl::PointXYZ>target_filtered;
- std::vector<std::vector<int>> target_member;//输出,茎上点index
- std::vector<pcl::PointXYZ>target_filtered_root;
- std::vector<pcl::ModelCoefficients::Ptr> target_filtered_models; //茎直线模型
- line_filter(in_cloud, hole_step_radius,ymin,ymax, target_root, target_filtered,
- target_filtered_root,
- target_member,
- target_filtered_models);
- if (target_filtered_root.size() == 0) {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": line_filter reuslt cluster is empty" ;
- m_pLogger->INFO(buff.str());
- }
- //统计苗数量
- first_row_size = 0;
- for (auto&has_seedling : m_root_center_with_seedling) {
- if (has_seedling) { first_row_size += 1; }
- }
- return false;
- }
- if (m_cparam.image_show) {
- std::vector<pcl::PointXYZ> final_box;
- for (auto&pt : target_filtered_root) {
- //扩展矩形范围
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = pt.x - hole_step_radius;
- min_point_aabb_ex.y = ymin;
- min_point_aabb_ex.z = pt.z - hole_step_radius;
- max_point_aabb_ex.x = pt.x + hole_step_radius;
- max_point_aabb_ex.y = ymax;
- max_point_aabb_ex.z = pt.z + hole_step_radius;
- final_box.push_back(min_point_aabb_ex);
- final_box.push_back(max_point_aabb_ex);
- }
- viewer_cloud_cluster_box(in_cloud, target_filtered_root, final_box, target_member, std::string("line_filter"));
- std::vector<std::vector<int>>target_member_empty;
- viewer_cloud_cluster_box(m_raw_cloud, target_filtered_root, final_box, target_member_empty, std::string("stem_box_in_raw_pc"));
- }
- //保存茎的根部坐标和点云数量
- if (m_pStemInfos) {
- for (size_t k = 0; k < target_filtered_root.size(); ++k) {
- CStemResult sr = CStemResult(target_filtered_root.at(k).x,
- target_filtered_root.at(k).y,
- target_filtered_root.at(k).z,
- target_member.at(k).size(),
- m_pcdId,
- 1);
- m_pStemInfos->append(sr);
- }
- }
-
- //sort cluster center, get the frontest leftest one
- //找最小z,然后计算平均z
- float mean_root_z_all = 0.0;
- for(auto&pt : target_filtered_root) {
- mean_root_z_all += pt.z;
- }
- mean_root_z_all /= target_filtered_root.size();
- //通过最小z,保守的找到和他一排的植株
- std::vector<int> first_row_index;
- float mean_z = 0.0;
- for (int idx_r = 0; idx_r < target_filtered_root.size();++idx_r) {
- pcl::PointXYZ&pt = target_filtered_root.at(idx_r);
- if (std::fabs(pt.z - mean_root_z_all) < hole_step_radius) {
- first_row_index.push_back(idx_r);
- mean_z += pt.z;
- }
- }
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": current seedling number:"<< first_row_index.size()
- <<", mean_z:"<< mean_z;
- m_pLogger->INFO(buff.str());
- }
- //如果第一排的植株大于3,计算平均值
- float first_row_num = (float)first_row_index.size();
- mean_z /= first_row_num;
- if (first_row_num >= 4) {
- if (m_dtype == 0) {
- m_1st_row_zmean_sc = mean_z;
- }
- else{ m_1st_row_zmean_rs = mean_z; }
- }
- else {
- if( m_dtype == 0) {
- if (m_1st_row_zmean_sc > 0) {
- mean_z = m_1st_row_zmean_sc; }
- }
- else {
- if (m_1st_row_zmean_rs > 0) {
- mean_z = m_1st_row_zmean_rs; }
- }
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": update with historic mean_z:" << mean_z;
- m_pLogger->INFO(buff.str());
- }
- }
- //通过mean_z再次寻找第一排的植株
- first_row_index.clear();
- for (int idx_r = 0; idx_r < target_filtered_root.size(); ++idx_r) {
- pcl::PointXYZ&pt = target_filtered_root.at(idx_r);
- if (std::fabs(pt.z - mean_z) < hole_step_radius) {
- first_row_index.push_back(idx_r);
- }
- }
- //找第一排的植株没有满足要求的
- if (first_row_index.size()==0) {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": NOT found valid seedlings";
- m_pLogger->INFO(buff.str());
- }
- //统计苗数量
- first_row_size = 0;
- for (auto&has_seedling : m_root_center_with_seedling) {
- if (has_seedling) { first_row_size += 1; }
- }
- return false;
- }
- ///////////////////////////////////////////////////////////
- std::vector<float> cluster_index;
- for (int i=0; i<first_row_index.size();++i){
- int raw_idx = first_row_index.at(i);
- pcl::PointXYZ&pt = target_filtered_root.at(raw_idx);
- cluster_index.push_back(pt.x);
- //update m_root_center_with_seedling
- double min_dist = hole_step;
- int min_i = -1;
- for (int rc_i = 0; rc_i < m_root_centers.size(); ++rc_i)
- {
- double dist = fabs(pt.x - m_root_centers.at(rc_i).root_x);
- if (dist < min_dist) {
- min_dist = dist;
- min_i = rc_i;
- }
- }
- if (min_i >= 0) {
- m_root_center_with_seedling.at(min_i) = true;
- }
- }
- //统计苗数量
- first_row_size = 0;
- for (auto&has_seedling : m_root_center_with_seedling) {
- if (has_seedling) { first_row_size += 1; }
- }
-
- int first_idx = std::min_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
- if (m_dtype == 0) {
- first_idx = std::max_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
- }
- first_idx = first_row_index.at(first_idx);
- first_seedling_cloud_idx.clear();
- for (auto&v : target_member.at(first_idx)) {
- first_seedling_cloud_idx.push_back(v);
- }
- xz_center.x = target_filtered_root.at(first_idx).x;
- xz_center.y = target_filtered_root.at(first_idx).y;
- xz_center.z = target_filtered_root.at(first_idx).z;
- line_model = target_filtered_models.at(first_idx);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": euclidean_clustering_ttsas, find cluster center(" << xz_center.x
- <<", "<< xz_center.y<<", "<< xz_center.z<<")";
- m_pLogger->INFO(buff.str());
- }
- return true;
- }
- void CRootStockGrabPoint::tilted_seedling_discover(
- std::vector<pcl::PointXYZ>&cluster_center, //输入,已知的苗的坐标
- std::vector<pcl::PointXYZ>&tilted_center //输出,有倾斜苗的坐标
- )
- {
- tilted_center.clear();
- if (cluster_center.size() == 0) { return; }
- //找到z最小的那一株,并找出和它一排的那些
- float step_harf = m_cparam.rs_grab_seedling_dist / 2.0;
- float xmin = m_cparam.rs_grab_xmin;
- float xmax = m_cparam.rs_grab_xmax;
- float zmin = m_cparam.rs_grab_zmin;
- float zmax = m_cparam.rs_grab_zmax;
- if (m_dtype == 0) {
- step_harf = m_cparam.sc_grab_seedling_dist / 2.0;
- xmin = m_cparam.sc_grab_xmin;
- xmax = m_cparam.sc_grab_xmax;
- zmin = m_cparam.sc_grab_zmin;
- zmax = m_cparam.sc_grab_zmax;
- }
- auto minz_it = std::min_element(cluster_center.begin(), cluster_center.end(),
- [](const pcl::PointXYZ& p1, const pcl::PointXYZ& p2)-> bool {return p1.z < p2.z; });
- float minz = minz_it->z;
- float meanz = 0.0;
- float cnt = 0.0;
- for (auto&p : cluster_center) {
- if (fabs(p.z - minz) < step_harf) { meanz += p.z; cnt += 1.0; }
- }
- if(cnt>0.0){meanz /= cnt;}
- else { meanz = minz; }
- // 生成所有可能的植株位置中心点
- std::vector<pcl::PointXYZ>candidate_centers;
- for (int row = -1; row <= 1; row += 1) {
- for (int col = -6; col <= 6; col += 1) {
- float cx = minz_it->x + col * 2.0 * step_harf;
- float cz = meanz + row * 2.0 * step_harf;
- if (cx < xmin || cx > xmax) { continue; }
- if (cz < zmin || cz > zmax) { continue; }
- // 邻域内已经存在植株的跳过
- bool with_seedling = false;
- for (auto&p : cluster_center) {
- float d = std::sqrt((p.x - cx) * (p.x - cx) + (p.z - cz) * (p.z - cz));
- if (d < 2.0*step_harf) {
- with_seedling=true;
- break;
- }
- }
- if (!with_seedling) {//保存
- pcl::PointXYZ pc(cx,0.0,cz);
- candidate_centers.push_back(pc);
- }
- }
- }
- //针对每一个candidat_centers的邻域进行检查,检测是否有茎目标
- for (auto&pc : candidate_centers) {
- }
-
- }
- void CRootStockGrabPoint::find_seedling_position(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- std::vector<int> &first_seedling_cloud_idx,
- pcl::PointXYZ&xz_center
- )
- {
- // 确定植株inbox范围
- float hole_step = m_cparam.rs_grab_seedling_dist - 10.0; //穴盘中穴间距
- if (m_dtype == 0) {
- hole_step = m_cparam.sc_grab_seedling_dist - 10.0;
- }
- float hole_step_radius = hole_step / 2.0;
- // 点云降维到xz平面,y=0
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*in_cloud, *cloud2d);
- for (auto&pt : *cloud2d) {
- pt.y = 0.0;
- }
- /*if(m_cparam.image_show){
- viewer_cloud(cloud2d, std::string("cloud2d"));
- } */
- // 在xz平面内统计点的密度
- double radius = m_cparam.rs_grab_stem_diameter;
- if (m_dtype == 0) {
- radius = m_cparam.sc_grab_stem_diameter;
- }
- std::vector<int> counter;
- pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
- kdtree.setInputCloud(cloud2d);
- std::vector<int>idx;
- std::vector<float>dist_sqr;
- for (size_t i = 0; i < cloud2d->points.size(); ++i) {
- int k = kdtree.radiusSearch(cloud2d->points.at(i), radius, idx, dist_sqr);
- counter.push_back(k);
- }
- // 计算根据密度分割的自动阈值
- int th = (int)(otsu(counter));
- // 得到茎目标的点云序号,和对应的点云cloud2d_pos
- std::vector<int> index;
- for (size_t i = 0; i < counter.size(); ++i) {
- if (counter.at(i) >= th) {
- index.push_back(i);
- }
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d_pos(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud2d, index, *cloud2d_pos);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": get 2d seedling seed point cloud " << index.size() << " data points with thrreshold " << th;
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- viewer_cloud(cloud2d_pos, std::string("cloud2d_pos"));
- }
- //对茎的点云进行clustering,得到不同的茎的分组
- double d1 = m_cparam.rs_grab_stem_diameter;
- double d2 = m_cparam.rs_grab_stem_diameter * 3.0;
- if (m_dtype == 0) {
- d1 = m_cparam.sc_grab_stem_diameter;
- d2 = m_cparam.sc_grab_stem_diameter * 3.0;
- }
- std::vector<pcl::PointXYZ>cluster_center;
- std::vector<std::vector<int>> cluster_member;
- euclidean_clustering_ttsas(cloud2d_pos, d1, d2, cluster_center, cluster_member);
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": euclidean_clustering_ttsas: " << cluster_center.size() << " t1=" << d1
- << " t2=" << d2;
- m_pLogger->INFO(buff.str());
- }
- if (m_cparam.image_show) {
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZRGB>);
- pcl::copyPointCloud(*cloud2d_pos, *cloud_cluster);
- for (auto& pt : *cloud_cluster) {
- pt.r = 255;
- pt.g = 255;
- pt.b = 255;
- }
- viewer_cloud_cluster(cloud_cluster, cluster_center, std::string("cloud2d_cluster_pos"));
- }
- // 扩展检测第一排的可能位置,找到倾斜的苗
- std::vector<pcl::PointXYZ> tilted_center;
- tilted_seedling_discover(cluster_center, tilted_center);
- //对每个类别进行检测,剔除不是茎的类别
- std::vector<pcl::PointXYZ> clt_root;
- std::vector<pcl::PointXYZ> clt_box;
- std::vector<std::vector<int> > clt_line_idx;
- for (size_t i = 0; i < cluster_center.size(); ++i) {
- pcl::PointIndices cluster_idxs;
- for (auto idx_clt : cluster_member.at(i)) {
- int idx_raw = index.at(idx_clt);
- cluster_idxs.indices.push_back(idx_raw);
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr clt_cloud(new pcl::PointCloud < pcl::PointXYZ>);
- pcl::copyPointCloud(*in_cloud, cluster_idxs, *clt_cloud);
- //计算每一个茎的外接矩形
- pcl::PointXYZ min_point_aabb;
- pcl::PointXYZ max_point_aabb;
- pcl::MomentOfInertiaEstimation<pcl::PointXYZ> feature_extractor;
- feature_extractor.setInputCloud(clt_cloud);
- feature_extractor.compute();
- feature_extractor.getAABB(min_point_aabb, max_point_aabb);
- //扩展矩形范围
- pcl::PointXYZ min_point_aabb_ex;
- pcl::PointXYZ max_point_aabb_ex;
- min_point_aabb_ex.x = 0.5*(min_point_aabb.x + max_point_aabb.x) - hole_step_radius;
- min_point_aabb_ex.y = m_cparam.sc_grab_ymin;
- if (m_dtype != 0) { min_point_aabb_ex.y = m_cparam.rs_grab_ymin; }
- min_point_aabb_ex.z = 0.5*(min_point_aabb.z + max_point_aabb.z) - hole_step_radius;
- max_point_aabb_ex.x = 0.5*(min_point_aabb.x + max_point_aabb.x) + hole_step_radius;
- max_point_aabb_ex.y = m_cparam.sc_grab_ymax;
- if (m_dtype != 0) { max_point_aabb_ex.y = m_cparam.rs_grab_ymax; }
- max_point_aabb_ex.z = 0.5*(min_point_aabb.z + max_point_aabb.z) + hole_step_radius;
- /////////////////////////////////
- //扩展矩形内直线检测
- std::vector<int>line_idx;
- find_line_in_cube(in_cloud, min_point_aabb_ex, max_point_aabb_ex, line_idx);
- clt_line_idx.push_back(line_idx);
- //找到line_idx中y最小的那个点的idx
- int line_root_idx = -1;
- float line_root_y_min = 10000.0;
- for (size_t lidx = 0; lidx < line_idx.size(); ++lidx) {
- int raw_idx = line_idx.at(lidx);
- if (in_cloud->at(raw_idx).y < line_root_y_min) {
- line_root_y_min = in_cloud->at(raw_idx).y;
- line_root_idx = raw_idx;
- }
- }
- //找到底部中心点,然后找到根部坐标
- pcl::PointXYZ pt_root;
- pt_root = in_cloud->at(line_root_idx);
- clt_root.push_back(pt_root);
- clt_box.push_back(min_point_aabb_ex);
- clt_box.push_back(max_point_aabb_ex);
- //viewer_cloud(clt_cloud, std::string("cluster"));
- }
- if (m_cparam.image_show) {
- viewer_cloud_cluster_box(in_cloud, clt_root, clt_box, clt_line_idx, std::string("cloud2d_cluster_box"));
- }
- //sort cluster center, get the frontest leftest one
- std::vector<float> cluster_index;
- for (auto&pt : clt_root) {
- float idx = pt.x - pt.z;
- cluster_index.push_back(idx);
- }
- int first_idx = std::min_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
- if (m_dtype == 0) {
- first_idx = std::max_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
- }
- first_seedling_cloud_idx.clear();
- for (auto&v : clt_line_idx.at(first_idx)) {
- first_seedling_cloud_idx.push_back(v);
- }
- xz_center.x = clt_root.at(first_idx).x;
- xz_center.y = clt_root.at(first_idx).y;
- xz_center.z = clt_root.at(first_idx).z;
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": euclidean_clustering_ttsas, find cluster center(" << xz_center.x
- << ", " << xz_center.y << ", " << xz_center.z << ")";
- m_pLogger->INFO(buff.str());
- }
- }
- void CRootStockGrabPoint::find_line_in_cube(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //输入,整体点云
- pcl::PointXYZ& min_pt_ex, //输入,
- pcl::PointXYZ& max_pt_ex, //输入,
- std::vector<int>& out_idx //输出,直线上点的index, 基于输入整体点云
- )
- {
- out_idx.clear();
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- std::vector<int>inbox_idx;
- box_filter.setMin(Eigen::Vector4f(min_pt_ex.x, min_pt_ex.y, min_pt_ex.z, 1));
- box_filter.setMax(Eigen::Vector4f(max_pt_ex.x, max_pt_ex.y, max_pt_ex.z, 1));
-
- box_filter.setNegative(false);
- box_filter.setInputCloud(in_cloud);
- box_filter.filter(inbox_idx);
- pcl::copyPointCloud(*in_cloud, inbox_idx, *cloud_inbox);
-
- //找到inbox点云中的直线
- float stem_radius = m_cparam.rs_grab_stem_diameter / 2.0;
- if (m_dtype == 0) {
- stem_radius = m_cparam.sc_grab_stem_diameter / 2.0;
- }
- pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
- pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
- pcl::SACSegmentation<pcl::PointXYZ> seg;
- seg.setOptimizeCoefficients(true);
- seg.setModelType(pcl::SACMODEL_LINE);
- seg.setDistanceThreshold(stem_radius);
- seg.setInputCloud(cloud_inbox);
- seg.segment(*inliers, *coefficients);
-
- int idx_raw = 0;
- for (auto& idx : inliers->indices) {
- idx_raw = inbox_idx.at(idx);
- out_idx.push_back(idx_raw);
- }
- if (m_cparam.image_show) {
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_line(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud_inbox, *inliers, *cloud_line);
- pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("line in cluster"));
- viewer->addPointCloud<pcl::PointXYZ>(cloud_inbox, "cluster");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "cluster");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cluster");
- viewer->addPointCloud(cloud_line, "fit_line");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0, 1, 0, "fit_line");
- viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "fit_line");
- while (!viewer->wasStopped()) {
- viewer->spinOnce(100);
- }
- }
- }
- void CRootStockGrabPoint::crop_nn_analysis(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- pcl::PointCloud<pcl::PointXYZ>::Ptr seed_cloud,
- double dist_mean,
- std::vector<double>&mass_indices,
- std::vector<int>& candidate_idx
- )
- {
- candidate_idx.clear();
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter;
- box_filter.setNegative(false);
- box_filter.setInputCloud(in_cloud);
- double radius = 5;
- double rx = 0.8;
- double ry = 1.0;
- double rz = 0.8;
- double cx, cy, cz;
- double dz;
- for (size_t i = 0; i < seed_cloud->points.size(); ++i) {
- cx = seed_cloud->points.at(i).x;
- cy = seed_cloud->points.at(i).y;
- cz = seed_cloud->points.at(i).z;
- box_filter.setMin(Eigen::Vector4f(cx - rx*radius, cy - ry*radius, cz - rz*radius, 1));
- box_filter.setMax(Eigen::Vector4f(cx + rx*radius, cy + ry*radius, cz + rz*radius, 1));
- box_filter.filter(*cloud_inbox);
- //dz
- Eigen::Vector4f min_point;
- Eigen::Vector4f max_point;
- pcl::getMinMax3D(*cloud_inbox, min_point, max_point);
- dz = max_point(2) - min_point(2);
- //project to xy-plane
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox_xy(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud_inbox, *cloud_inbox_xy);
- for (auto&pt : *cloud_inbox_xy) { pt.z = 0.0; }
- //pca
- double dx_obb;
- double dy_obb;
- double angle_obb;
- cal_obb_2d(cloud_inbox_xy, 0, dx_obb, dy_obb, angle_obb);
- try {
- double dx_grid = dx_obb / dist_mean;
- double dy_grid = dy_obb / dist_mean;
- double dz_grid = dz / dist_mean;
- double fill_ratio = cloud_inbox->points.size() / dx_grid / dy_grid / dz_grid;
- double y_ratio = dy_obb / dx_obb/2;
- y_ratio = pow(y_ratio, 2);
- double a_ratio = cos((angle_obb - 90)*PI / 180.0);
- a_ratio = pow(a_ratio, 3);
- double mass_index = fill_ratio*y_ratio*a_ratio;
- mass_indices.push_back(mass_index);
-
- if (m_pLogger) {
- stringstream buff;
- buff << i << "/" << seed_cloud->points.size() << " dx=" << dx_obb << ", dy=" << dy_obb << ", fill_ratio=" << fill_ratio
- << ", y_ratio=" << y_ratio << ", a_ratio=" << a_ratio << ", mass_index=" << mass_index;
- m_pLogger->INFO(buff.str());
- }
- }
- catch (...) {
- mass_indices.push_back(0);
- }
- }
- // sort by mass_indices
- std::vector<size_t> sort_idx = sort_indexes_e(mass_indices, false);
- for (auto&v : sort_idx) { candidate_idx.push_back((int)v); }
- }
- void CRootStockGrabPoint::euclidean_clustering_ttsas(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- double d1, double d2,
- std::vector<pcl::PointXYZ>&cluster_center,
- std::vector<std::vector<int>> &clustr_member
- )
- {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": euclidean_clustering_ttsas() begin...";
- m_pLogger->INFO(buff.str());
- }
- std::vector<int> cluster_weight;
- std::vector<int> data_stat;
- std::vector<pcl::PointXYZ>cluster_center_raw;
- std::vector<std::vector<int>> clustr_member_raw;
- for (size_t i = 0; i < in_cloud->points.size(); ++i) { data_stat.push_back(0); }
- size_t data_len = in_cloud->points.size();
- int exists_change = 0;
- int prev_change = 0;
- int cur_change = 0;
- int m = 0;
- while (std::find(data_stat.begin(), data_stat.end(), 0) != data_stat.end()) {
- bool new_while_first = true;
- for (size_t i = 0; i < data_len; ++i) {
- if (data_stat.at(i) == 0 && new_while_first && exists_change == 0) {
- new_while_first = false;
- std::vector<int> idx;
- idx.push_back(i);
- clustr_member_raw.push_back(idx);
- pcl::PointXYZ center;
- center.x = in_cloud->points.at(i).x;
- center.y = in_cloud->points.at(i).y;
- center.z = in_cloud->points.at(i).z;
- cluster_center_raw.push_back(center);
- data_stat.at(i) = 1;
- cur_change += 1;
- cluster_weight.push_back(1);
- m += 1;
- }
- else if (data_stat[i] == 0) {
- std::vector<float> distances;
- for (size_t j = 0; j < clustr_member_raw.size(); ++j) {
- std::vector<float> distances_sub;
- for (size_t jj = 0; jj < clustr_member_raw.at(j).size(); ++jj) {
- size_t ele_idx = clustr_member_raw.at(j).at(jj);
- double d = sqrt(
- (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) * (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) +
- (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) * (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) +
- (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z) * (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z));
- distances_sub.push_back(d);
- }
- double min_dist = *std::min_element(distances_sub.begin(), distances_sub.end());
- distances.push_back(min_dist);
- }
- int min_idx = std::min_element(distances.begin(), distances.end()) - distances.begin();
- if (distances.at(min_idx) < d1) {
- data_stat.at(i) = 1;
- double w = cluster_weight.at(min_idx);
- cluster_weight.at(min_idx) += 1;
- clustr_member_raw.at(min_idx).push_back(i);
- cluster_center_raw.at(min_idx).x = (cluster_center_raw.at(min_idx).x * w + in_cloud->points.at(i).x) / (w + 1);
- cluster_center_raw.at(min_idx).y = (cluster_center_raw.at(min_idx).y * w + in_cloud->points.at(i).y) / (w + 1);
- cluster_center_raw.at(min_idx).z = (cluster_center_raw.at(min_idx).z * w + in_cloud->points.at(i).z) / (w + 1);
- cur_change += 1;
- }
- else if (distances.at(min_idx) > d2) {
- std::vector<int> idx;
- idx.push_back(i);
- clustr_member_raw.push_back(idx);
- pcl::PointXYZ center;
- center.x = in_cloud->points.at(i).x;
- center.y = in_cloud->points.at(i).y;
- center.z = in_cloud->points.at(i).z;
- cluster_center_raw.push_back(center);
- data_stat.at(i) = 1;
- cur_change += 1;
- cluster_weight.push_back(1);
- m += 1;
- }
- }
- else if (data_stat.at(i)== 1) {
- cur_change += 1;
- }
- }
- exists_change = fabs(cur_change - prev_change);
- prev_change = cur_change;
- cur_change = 0;
- }
- // copy result
- for (size_t i = 0; i < clustr_member_raw.size(); ++i) {
- if (clustr_member_raw.at(i).size() < 20) { continue; }
- cluster_center.push_back(cluster_center_raw.at(i));
- clustr_member.push_back(clustr_member_raw.at(i));
- }
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId <<": euclidean_clustering_ttsas() end";
- m_pLogger->INFO(buff.str());
- }
- }
- void CRootStockGrabPoint::cal_obb_2d(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
- int axis, //0--xy, 1--zy
- double &dx_obb,
- double &dy_obb,
- double &angle_obb
- )
- {
- // asign value
- Eigen::MatrixXd pts(in_cloud->points.size(), 2);
- for (size_t i = 0; i < in_cloud->points.size(); ++i) {
- if (axis == 0) {
- pts(i, 0) = in_cloud->points.at(i).x;
- }
- else {
- pts(i, 0) = in_cloud->points.at(i).z;
- }
- pts(i, 1) = in_cloud->points.at(i).y;
- }
- // centerlize
- Eigen::MatrixXd mu = pts.colwise().mean();
- Eigen::RowVectorXd mu_row = mu;
- pts.rowwise() -= mu_row;
- //calculate covariance
- Eigen::MatrixXd C = pts.adjoint()*pts;
- C = C.array() / (pts.cols() - 1);
- //compute eig
- Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eig(C);
- Eigen::MatrixXd d = eig.eigenvalues();
- Eigen::MatrixXd v = eig.eigenvectors();
- //projection
- Eigen::MatrixXd p = pts * v;
- Eigen::VectorXd minv = p.colwise().minCoeff();
- Eigen::VectorXd maxv = p.colwise().maxCoeff();
- Eigen::VectorXd range = maxv - minv;
- dy_obb = range(1);
- dx_obb = range(0);
- angle_obb = std::atan2(v(1, 1), v(0, 1));
- if (angle_obb < 0) { angle_obb = PI + angle_obb; }
- angle_obb = angle_obb * 180 / PI;
- }
- void CRootStockGrabPoint::get_optimal_seed_compare(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud, //input 全部有效点云
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_line_cloud, //input 茎上直线点云
- pcl::ModelCoefficients::Ptr line_model, //input
- pcl::PointXYZ&pt, // 返回抓取的点坐标,基于pt_ref的偏移点
- pcl::PointXYZ &pt_ref, // 返回点茎节的参考点
- pcl::PointXYZ&pt_rs_grab, // 返回砧木指定的固定高度位置坐标
- float& stem_width_mu, // 茎宽度,直径
- float& stem_deflection //茎的最大挠度,最大弯曲处的偏离直径轴心的距离,毫米
- )
- {
- // stem_deflection 的计算方法:计算点云到拟合轴线的平均距离
- float th_ratio = 1.5; //原始点云和直线点云邻域尺寸增加原来的20%,不能当做抓取点
- pt.x = -1000.0;
- pt.y = -1000.0;
- pt.z = -1000.0;
- stem_width_mu = 0.0;
- stem_deflection = 0.0;
- pt_rs_grab.x = -1000.0;
- pt_rs_grab.y = -1000.0;
- pt_rs_grab.z = -1000.0;
- float ymin, ymax;
- ymin = m_cparam.rs_grab_ymin;
- ymax = m_cparam.rs_grab_ymax;
- if (m_dtype == 0) {
- ymin = m_cparam.sc_grab_ymin;
- ymax = m_cparam.sc_grab_ymax;
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox_line(new pcl::PointCloud<pcl::PointXYZ>);
- std::vector<float> stem_width;
- std::vector<pcl::PointXYZ>online_points;
- pcl::CropBox<pcl::PointXYZ> box_filter;
- box_filter.setNegative(false);
- box_filter.setInputCloud(in_cloud);
- pcl::CropBox<pcl::PointXYZ> box_filter_line;
- box_filter_line.setNegative(false);
- box_filter_line.setInputCloud(in_line_cloud);
- float radius = m_cparam.rs_grab_stem_diameter;
- float cx, cy, cz, t;
- float rx = 1.5;
- float ry = 1.5;
- float rz = 1.5;
- float dz, dx;
-
- // 如果opt_y_valid==false,就是用户没有指定抓取的y高度
- float max_dist_to_boundary = 0.0;
- int max_idx_to_boundary = -1;
- find_fork(in_line_cloud, max_dist_to_boundary, max_idx_to_boundary);
- stem_deflection = static_cast<float>(calculate_deflection(in_line_cloud, line_model));
- cy = ymin;
- //计算茎上的直径
- while(cy<ymax){
- t = (cy - line_model->values.at(1)) / line_model->values.at(4);
- cx = line_model->values.at(3) * t + line_model->values.at(0);
- cz = line_model->values.at(5) * t + line_model->values.at(2);
- //////////////////////////////////////////////////////////////////
- //原始点云,获取指定区域的dx,dz
- box_filter.setMin(Eigen::Vector4f(cx - rx*radius, cy - 2, cz - rz*radius, 1));
- box_filter.setMax(Eigen::Vector4f(cx + rx*radius, cy + 2, cz + rz*radius, 1));
- box_filter.filter(*cloud_inbox);
- if (cloud_inbox->points.size() > 10) {
- Eigen::Vector4f min_point;
- Eigen::Vector4f max_point;
- pcl::getMinMax3D(*cloud_inbox, min_point, max_point);
- dx = max_point(0) - min_point(0);
- stem_width.push_back(dx);
- }
- else {
- stem_width.push_back(0);
- }
- pcl::PointXYZ tmp_pt(cx,cy,cz);
- online_points.push_back(tmp_pt);
- cy += 1.0;
- }
- //得到有效直径数值,并计算均值、标准差
- std::vector<float>valid_stem_width;
- for (auto&w : stem_width) {
- if (w > 0) {
- valid_stem_width.push_back(w);
- }
- }
- float mu = get_hist_mean(valid_stem_width);
- stem_width_mu = mu;
- float stdv = get_hist_std(valid_stem_width, mu);
- //0)计算点云到轴线的最大距离
- //1) original max position
- int max_pos = std::max_element(stem_width.begin(), stem_width.end()) - stem_width.begin();
- int max_pos_ref = max_pos;
- //3 如果fork方法得到位置信息,进行更新,并记录历史
- if (max_idx_to_boundary >= 0) {
- max_pos = int(in_line_cloud->points.at(max_idx_to_boundary).y + 0.5 - ymin);
- max_pos_ref = max_pos;
- }
-
- //4 用茎节上下限高度值进行约束,如果超限,用最低限高度作为茎节高度
- double grab_fork_yup = m_cparam.rs_grab_fork_yup;
- double grab_fork_ybt = m_cparam.rs_grab_fork_ybt;
- if (m_dtype == 0) {
- grab_fork_yup = m_cparam.sc_grab_fork_yup;
- grab_fork_ybt = m_cparam.sc_grab_fork_ybt;
- }
- bool out_of_range = false;
- if ((max_pos + ymin) > grab_fork_yup) {
- out_of_range = true;
- int original_max_pos = max_pos;
- max_pos = int(grab_fork_yup - ymin + 0.5);
- max_pos_ref = max_pos;
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": warning,self fork postiont = " << original_max_pos <<
- ", USE up limit fork postiont " << max_pos <<
- ", valid fork postiont range:[" << int(grab_fork_ybt - ymin + 0.5) <<
- ", " << int(grab_fork_yup - ymin + 0.5) << "]";
- m_pLogger->INFO(buff.str());
- }
- }
- else {
- if ((max_pos + ymin) < grab_fork_ybt) {
- out_of_range = true;
- int original_max_pos = max_pos;
- max_pos = int(grab_fork_ybt - ymin + 0.5);
- max_pos_ref = max_pos;
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": warning,self fork postiont = " << original_max_pos <<
- ", USE bottom limit fork postiont " << max_pos <<
- ", valid fork postiont range:[" << int(grab_fork_ybt - ymin + 0.5) <<
- ", " << int(grab_fork_yup - ymin + 0.5) << "]";
- m_pLogger->INFO(buff.str());
- }
- }
- else {
- if (m_pLogger) {
- stringstream buff;
- buff << m_pcdId << ": self fork postiont = " << max_pos <<
- ", valid fork postiont range:[" << int(grab_fork_ybt - ymin + 0.5) <<
- ", " << int(grab_fork_yup - ymin + 0.5) << "]";
- m_pLogger->INFO(buff.str());
- }
- }
- }
-
- //5 按指定量偏移
- if(m_dtype == 0){
- max_pos_ref = max_pos;
- max_pos += static_cast<int>(m_cparam.sc_grab_offset);
- }
- else{
- max_pos_ref = max_pos;
- max_pos += static_cast<int>(m_cparam.rs_grab_offset);
- }
- if (max_pos < 0) { max_pos = 0; }
- if (max_pos >= online_points.size()) { max_pos = online_points.size() - 1; }
- if (out_of_range) {
- max_pos_ref = max_pos;
- }
-
- /////////////////////////////////////////////////////////////////////
- //直线点云,获取指定区域的dx_line,dz_line
- Eigen::Vector4f min_point;
- Eigen::Vector4f max_point;
- cx = online_points.at(max_pos).x;
- cy = online_points.at(max_pos).y;
- cz = online_points.at(max_pos).z;
- box_filter_line.setMin(Eigen::Vector4f(cx - rx*radius, cy - 2, cz - rz*radius, 1));
- box_filter_line.setMax(Eigen::Vector4f(cx + rx*radius, cy + 2, cz + rz*radius, 1));
- box_filter_line.filter(*cloud_inbox_line);
- float z_mu = cz;
- float x_mu = cx;
- if (cloud_inbox_line->points.size() > 5) {
- pcl::getMinMax3D(*cloud_inbox_line, min_point, max_point);
- z_mu = 0.5 * (max_point(2) + min_point(2));
- x_mu = 0.5 * (max_point(0) + min_point(0));
- }
- pt.x = x_mu;
- pt.y = cy;
- pt.z = z_mu;
- pt_ref.x = online_points.at(max_pos_ref).x;
- pt_ref.y = online_points.at(max_pos_ref).y;
- pt_ref.z = online_points.at(max_pos_ref).z;
- //砧木指定y高度上的确定位置
- if (m_dtype == 1) {
- float grab_y = 0.5 * (m_cparam.rs_grab_fork_ybt + m_cparam.rs_grab_fork_yup);
- int grab_y_pos = int(grab_y - m_cparam.rs_grab_ymin);
- cx = online_points.at(grab_y_pos).x;
- cy = online_points.at(grab_y_pos).y;
- cz = online_points.at(grab_y_pos).z;
- box_filter_line.setMin(Eigen::Vector4f(cx - rx*radius, cy - 2, cz - rz*radius, 1));
- box_filter_line.setMax(Eigen::Vector4f(cx + rx*radius, cy + 2, cz + rz*radius, 1));
- box_filter_line.filter(*cloud_inbox_line);
- z_mu = cz;
- x_mu = cx;
- if (cloud_inbox_line->points.size() > 5) {
- pcl::getMinMax3D(*cloud_inbox_line, min_point, max_point);
- z_mu = 0.5 * (max_point(2) + min_point(2));
- x_mu = 0.5 * (max_point(0) + min_point(0));
- }
- pt_rs_grab.x = x_mu;
- pt_rs_grab.y = cy;
- pt_rs_grab.z = z_mu;
- }
- //显示位置
- if (m_cparam.image_show) {
- pcl::visualization::PCLVisualizer viewer("grab line");
- viewer.addCoordinateSystem();
- viewer.addPointCloud<pcl::PointXYZ>(in_line_cloud, "stem_cloud");//????????????????
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "stem_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "stem_cloud");
- viewer.addLine(online_points.front(), online_points.back(), 1.0, 0.0, 0.0);
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- }
- //计算茎的弯曲度:点云到直线的距离95分位
- double CRootStockGrabPoint::calculate_deflection(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_line_cloud, //input
- pcl::ModelCoefficients::Ptr line_model //input
- )
- {
- double deflection = 0.0;
- std::vector<double> dists;
- Eigen::Vector4f line_pt = { line_model->values[0],line_model->values[1],line_model->values[2],0.0 };
- Eigen::Vector4f line_dir = { line_model->values[3],line_model->values[4],line_model->values[5],0.0 };
- for (auto ptc : in_line_cloud->points) {
- //Get the square distance from a point to a line (represented by a point and a direction)
- Eigen::Vector4f pt = { ptc.x, ptc.y, ptc.z, 0.0 };
- double dist = (line_dir.cross3(line_pt - pt)).squaredNorm() / line_dir.squaredNorm();
- dists.push_back(sqrt(dist));
- }
- //deflection = get_hist_mean(dists);
- //95 percentile
- if (dists.size() > 0) {
- int idx_95 = int(0.95 * dists.size());
- std::sort(dists.begin(), dists.end());
- deflection = dists.at(idx_95);
- }
- return deflection;
- }
- void CRootStockGrabPoint::find_fork(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_line_cloud,
- float& max_dist,
- int& max_idx
- )
- {
- //1 project to xy plane
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_line_2d(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*in_line_cloud, *cloud_line_2d);
- for (pcl::PointXYZ&p : cloud_line_2d->points) { p.z = 0.0; }
- //2 边界检测
- pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree_ptr(new pcl::search::KdTree<pcl::PointXYZ>);
- pcl::PointCloud<pcl::Normal>::Ptr normal(new pcl::PointCloud<pcl::Normal>);
- pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
- ne.setInputCloud(cloud_line_2d);
- ne.setSearchMethod(kdtree_ptr);
- ne.setRadiusSearch(3.0);
- ne.compute(*normal);
- pcl::PointCloud<pcl::Boundary>::Ptr boundaries(new pcl::PointCloud<pcl::Boundary>);
- boundaries->resize(cloud_line_2d->size());
- pcl::BoundaryEstimation < pcl::PointXYZ, pcl::Normal, pcl::Boundary>boundary_estimation;
- boundary_estimation.setInputCloud(cloud_line_2d);
- boundary_estimation.setInputNormals(normal);
- boundary_estimation.setSearchMethod(kdtree_ptr);
- boundary_estimation.setKSearch(30);
- boundary_estimation.setAngleThreshold(M_PI*0.6);
- boundary_estimation.compute(*boundaries);
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_lines(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_visual(new pcl::PointCloud<pcl::PointXYZRGB>);
- cloud_visual->resize(cloud_line_2d->size());
- for (size_t i = 0; i < cloud_line_2d->size(); ++i) {
- cloud_visual->points.at(i).x = cloud_line_2d->points.at(i).x;
- cloud_visual->points.at(i).y = cloud_line_2d->points.at(i).y;
- cloud_visual->points.at(i).z = cloud_line_2d->points.at(i).z;
- if (boundaries->points.at(i).boundary_point != 0) {
- cloud_visual->points.at(i).r = 255;
- cloud_visual->points.at(i).g = 0;
- cloud_visual->points.at(i).b = 0;
- cloud_lines->points.push_back(cloud_line_2d->points.at(i));
- }
- else {
- cloud_visual->points.at(i).r = 255;
- cloud_visual->points.at(i).g = 255;
- cloud_visual->points.at(i).b = 255;
- }
- }
- /*if (m_cparam.image_show) {
- viewer_cloud(cloud_visual, string("boundary"));
- viewer_cloud(cloud_lines, string("cloud_lines"));
- }
- */
- //3 find points with max distance to boundaries point
- pcl::search::KdTree<pcl::PointXYZ>::Ptr bound_kdtree_ptr(new pcl::search::KdTree<pcl::PointXYZ>);
- bound_kdtree_ptr->setInputCloud(cloud_lines);
- max_idx = -1;
- max_dist = 0.0;
- int k = 1;
- for (int i = 0; i < cloud_line_2d->size(); ++i) {
- if (boundaries->points.at(i).boundary_point != 0) { continue; }
- std::vector<int> idx(k);
- std::vector<float> sqr_distances(k);
- int cnt = bound_kdtree_ptr->nearestKSearch(cloud_line_2d->points.at(i), k,idx,sqr_distances);
- if (cnt > 0) {
- if (sqr_distances.at(0) > max_dist) {
- max_dist = sqr_distances.at(0);
- max_idx = i;
- }
- }
- }
- if (m_cparam.image_show) {
- pcl::visualization::PCLVisualizer viewer("boundary line");
- viewer.addCoordinateSystem();
- viewer.addPointCloud<pcl::PointXYZRGB>(cloud_visual, "boundary");
-
- if (max_idx >= 0) {
- pcl::PointXYZ p0,p1;
- p0.x = cloud_line_2d->points.at(max_idx).x-5;
- p0.y = cloud_line_2d->points.at(max_idx).y;
- p0.z = cloud_line_2d->points.at(max_idx).z;
- p1.x = cloud_line_2d->points.at(max_idx).x + 5;
- p1.y = cloud_line_2d->points.at(max_idx).y;
- p1.z = cloud_line_2d->points.at(max_idx).z;
- viewer.addLine(p0, p1, 1.0, 0.0, 0.0);
- }
-
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- }
- void CRootStockGrabPoint::get_line_project_hist(
- pcl::PointCloud<pcl::PointXYZ>::Ptr in_line_cloud, //input 茎上直线点云
- pcl::ModelCoefficients::Ptr line_model, //input
- std::vector<int>& count_hist // 返回有效直线1mm内点云数量
- )
- {
- count_hist.clear();
- float ymin, ymax;
- ymin = m_cparam.rs_grab_ymin;
- ymax = m_cparam.rs_grab_ymax;
- if (m_dtype == 0) {
- ymin = m_cparam.sc_grab_ymin;
- ymax = m_cparam.sc_grab_ymax;
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::CropBox<pcl::PointXYZ> box_filter_line;
- box_filter_line.setNegative(false);
- box_filter_line.setInputCloud(in_line_cloud);
- float radius = m_cparam.rs_grab_stem_diameter;
- if (m_dtype == 0) {
- radius = m_cparam.sc_grab_stem_diameter;
- }
- float rx = 1.5;
- float rz = 1.5;
- float cx, cy, cz, t;
- cy = ymin;
- while (cy<ymax) {
- t = (cy - line_model->values.at(1)) / line_model->values.at(4);
- cx = line_model->values.at(3) * t + line_model->values.at(0);
- cz = line_model->values.at(5) * t + line_model->values.at(2);
-
- box_filter_line.setMin(Eigen::Vector4f(cx - rx*radius, cy - 0.5, cz - rz*radius, 1));
- box_filter_line.setMax(Eigen::Vector4f(cx + rx*radius, cy + 0.5, cz + rz*radius, 1));
- box_filter_line.filter(*cloud_inbox);
- count_hist.push_back(cloud_inbox->points.size());
- cy += 1.0;
- }
- }
- void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, std::string&winname)
- {
- pcl::visualization::CloudViewer viewer(winname);
- //viewer.runOnVisualizationThreadOnce(viewerOneOff);
- viewer.showCloud(cloud);
- while (!viewer.wasStopped()) {
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, std::string&winname)
- {
- pcl::visualization::CloudViewer viewer(winname);
- //viewer.runOnVisualizationThreadOnce(viewerOneOff);
- viewer.showCloud(cloud);
- while (!viewer.wasStopped()) {
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- void CRootStockGrabPoint::viewer_cloud_debug(
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud,
- pcl::PointXYZ &p, //抓取点
- pcl::PointXYZ &p_ref,//分叉点
- pcl::PointXYZ &root_pt,
- std::string&winname)
- {
- pcl::visualization::PCLVisualizer viewer(winname);
- //viewer.runOnVisualizationThreadOnce(viewerOneOff);
- viewer.addPointCloud(cloud);
- viewer.addCoordinateSystem();
- pcl::PointXYZ p0, x1, y1,p00,x0,y0, root_px0, root_px1, root_py0,root_py1;
- p0.x = p.x;
- p0.y = p.y;
- p0.z = p.z;
- x1.x = p.x + 100.0;
- x1.y = p.y;
- x1.z = p.z;
- y1.x = p.x;
- y1.y = p.y + 20.0;
- y1.z = p.z;
- p00.x = 0.0;
- p00.y = 0.0;
- p00.z = p.z;
- x0.x = 600.0;
- x0.y = 0;
- x0.z = p.z;
- y0.x = 0.0;
- y0.y = 300.0;
- y0.z = p.z;
-
- root_px0.x = root_pt.x - 5.0;
- root_px0.y = root_pt.y;
- root_px0.z = root_pt.z;
- root_px1.x = root_pt.x + 5.0;
- root_px1.y = root_pt.y;
- root_px1.z = root_pt.z;
- root_py0.x = root_pt.x;
- root_py0.y = root_pt.y;
- root_py0.z = root_pt.z - 5.0;
- root_py1.x = root_pt.x;
- root_py1.y = root_pt.y;
- root_py1.z = root_pt.z + 5.0;
- //茎节点
- pcl::PointXYZ fork_px0, fork_px1, fork_py0, fork_py1;
- fork_px0.x = p_ref.x - 5.0;
- fork_px0.y = p_ref.y;
- fork_px0.z = p_ref.z;
- fork_px1.x = p_ref.x + 5.0;
- fork_px1.y = p_ref.y;
- fork_px1.z = p_ref.z;
- fork_py0.x = p_ref.x;
- fork_py0.y = p_ref.y;
- fork_py0.z = p_ref.z - 5.0;
- fork_py1.x = p_ref.x;
- fork_py1.y = p_ref.y;
- fork_py1.z = p_ref.z + 5.0;
- viewer.addLine(p0, x1, 255, 0, 0, "x");
- viewer.addLine(p0, y1, 0, 255, 0, "y");
- viewer.addLine(p00, x0, 255, 0, 0, "x0");
- viewer.addLine(p00, y0, 0, 255, 0, "y0");
- viewer.addLine(root_px0, root_px1, 255, 0, 0, "rootx");
- viewer.addLine(root_py0, root_py1, 0, 255, 0, "rooty");
- viewer.addLine(fork_px0, fork_px1, 255, 0, 0, "forkx");
- viewer.addLine(fork_py0, fork_py1, 0, 255, 0, "forky");
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- void CRootStockGrabPoint::viewer_cloud_cluster(
- pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud,
- std::vector<pcl::PointXYZ>cluster_center,
- std::string&winname)
- {
- pcl::visualization::PCLVisualizer viewer(winname);
- viewer.addPointCloud(cloud);
- viewer.addCoordinateSystem();
- int cnt = 0;
- char buf[8];
- for (auto& p : cluster_center) {
- pcl::PointXYZ px0, px1, py1, py0;
- px0.x = p.x;
- px0.y = p.y;
- px0.z = p.z;
- px1.x = p.x + 10.0;
- px1.y = p.y;
- px1.z = p.z;
- py0.x = p.x;
- py0.y = p.y;
- py0.z = p.z;
- py1.x = p.x;
- py1.y = p.y + 10.0;
- py1.z = p.z;
- viewer.addLine(px0, px1, 255, 0, 0, "x" + string(_itoa(cnt, buf,10)));
- viewer.addLine(py0, py1, 0, 255, 0, "y" + string(_itoa(cnt, buf, 10)));
- cnt += 1;
- }
-
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- void CRootStockGrabPoint::viewer_cloud_cluster_box(
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud,
- std::vector<pcl::PointXYZ>&cluster_center,
- std::vector<pcl::PointXYZ>&cluster_box,
- std::vector<std::vector<int> >& clt_line_idx,
- std::string&winname)
- {
- pcl::visualization::PCLVisualizer viewer(winname);
- viewer.addCoordinateSystem();
- viewer.addPointCloud<pcl::PointXYZ>(cloud, "all_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1, 1, 1, "all_cloud");
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "all_cloud");
-
- int cnt = 0;
- char buf[8];
- for (size_t i = 0; i < cluster_center.size();++i) {
- pcl::PointXYZ &p = cluster_center.at(i);
- pcl::PointXYZ px0, px1, py1, py0;
- px0.x = p.x;
- px0.y = p.y;
- px0.z = p.z;
- px1.x = p.x + 10.0;
- px1.y = p.y;
- px1.z = p.z;
- py0.x = p.x;
- py0.y = p.y;
- py0.z = p.z;
- py1.x = p.x;
- py1.y = p.y + 10.0;
- py1.z = p.z;
- viewer.addLine(px0, px1, 255, 0, 0, "x" + string(_itoa(cnt, buf, 10)));
- viewer.addLine(py0, py1, 0, 255, 0, "y" + string(_itoa(cnt, buf, 10)));
- //box
- pcl::PointXYZ & min_pt = cluster_box.at(2 * i);
- pcl::PointXYZ & max_pt = cluster_box.at(2 * i + 1);
- viewer.addCube(min_pt.x, max_pt.x, min_pt.y, max_pt.y, min_pt.z, max_pt.z, 0.5,0.5,0.0,"AABB_"+string(_itoa(cnt, buf, 10)));
- viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION,
- pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB_" + string(_itoa(cnt, buf, 10)));
- if (clt_line_idx.size()>i && clt_line_idx.at(i).size() > 0) {
- pcl::PointCloud<pcl::PointXYZ>::Ptr line_cloud(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::copyPointCloud(*cloud, clt_line_idx.at(i), *line_cloud);
- viewer.addPointCloud(line_cloud, "fit_line" + string(_itoa(cnt, buf, 10)));
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0, 1, 0, "fit_line" + string(_itoa(cnt, buf, 10)));
- viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "fit_line" + string(_itoa(cnt, buf, 10)));
- }
- cnt += 1;
- }
- while (!viewer.wasStopped()) {
- viewer.spinOnce(100);
- boost::this_thread::sleep(boost::posix_time::microseconds(100000));
- }
- }
- };
|