grab_point_rs.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. /*
  2. 通过点云数据识别抓取位置信息
  3. 1)获取点云
  4. 2)剔除离群点
  5. 3)降采样
  6. 4)植株检测
  7. 5)选出最前,最右侧植株
  8. 6)植株抓取位置检测
  9. */
  10. #include <pcl\io\ply_io.h>
  11. #include <pcl\visualization\cloud_viewer.h>
  12. #include <pcl\filters\crop_box.h>
  13. #include <pcl\filters\radius_outlier_removal.h>
  14. #include <pcl\filters\voxel_grid.h>
  15. #include <pcl\common\common.h>
  16. #include <math.h>
  17. #include "grab_point_rs.h"
  18. #include "utils.h"
  19. #define PI std::acos(-1)
  20. namespace graft_cv {
  21. CRootStockGrabPoint::CRootStockGrabPoint(ConfigParam&cp, CGcvLogger*pLog/*=0*/)
  22. :m_cparam(cp),
  23. m_pLogger(pLog),
  24. m_dtype(0)
  25. {
  26. }
  27. CRootStockGrabPoint::~CRootStockGrabPoint() {}
  28. float* CRootStockGrabPoint::get_raw_point_cloud(int &data_size)
  29. {
  30. data_size = m_raw_cloud->width * m_raw_cloud->height;
  31. if (data_size == 0) {
  32. return 0;
  33. }
  34. else {
  35. pcl::PointXYZ* pp = m_raw_cloud->points.data();
  36. return (float*)pp->data;
  37. }
  38. }
  39. int CRootStockGrabPoint::load_data(
  40. float*pPoint,
  41. int pixel_size,
  42. int pt_size,
  43. const char* fn/* = 0*/)
  44. {
  45. int rst = 0;
  46. //1 get point cloud data
  47. if (pPoint != 0 && pt_size>0) {
  48. //read point
  49. m_raw_cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
  50. int step = pixel_size;
  51. for (int i = 0; i < pt_size; ++i) {
  52. pcl::PointXYZ pt = { pPoint[i*step], pPoint[i*step + 1] , pPoint[i*step + 2] };
  53. m_raw_cloud->push_back(pt);
  54. }
  55. rst = m_raw_cloud->width * m_raw_cloud->height;
  56. if (m_pLogger) {
  57. stringstream buff;
  58. buff << "load raw point cloud " << rst << " data points";
  59. m_pLogger->INFO(buff.str());
  60. }
  61. }
  62. else if (fn != 0) {
  63. //read file
  64. rst = this->read_ply_file(fn);
  65. }
  66. else {//error
  67. if (m_pLogger) {
  68. m_pLogger->ERRORINFO("no valid input");
  69. return (-1);
  70. }
  71. }
  72. if (m_cparam.image_show) {
  73. viewer_cloud(m_raw_cloud, std::string("raw point cloud"));
  74. }
  75. return rst;
  76. }
  77. int CRootStockGrabPoint::grab_point_detect(
  78. int dtype,
  79. PositionInfo& posinfo
  80. )
  81. {
  82. // dtype == 0, rootstock
  83. // dtype != 0, scion
  84. if (m_raw_cloud->width * m_raw_cloud->height < 1) {
  85. if (m_pLogger) {
  86. stringstream buff;
  87. buff << "m_raw_cloud point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
  88. m_pLogger->ERRORINFO(buff.str());
  89. }
  90. return 1;
  91. }
  92. //2 crop filter
  93. if (m_pLogger) {
  94. m_pLogger->INFO("begin crop");
  95. }
  96. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
  97. pcl::CropBox<pcl::PointXYZ> box_filter;
  98. m_dtype = dtype;
  99. if (dtype == 0) {
  100. box_filter.setMin(Eigen::Vector4f(m_cparam.rs_grab_xmin, m_cparam.rs_grab_ymin, m_cparam.rs_grab_zmin, 1));
  101. box_filter.setMax(Eigen::Vector4f(m_cparam.rs_grab_xmax, m_cparam.rs_grab_ymax, m_cparam.rs_grab_zmax, 1));
  102. }
  103. else {
  104. box_filter.setMin(Eigen::Vector4f(m_cparam.sc_grab_xmin, m_cparam.sc_grab_ymin, m_cparam.sc_grab_zmin, 1));
  105. box_filter.setMax(Eigen::Vector4f(m_cparam.sc_grab_xmax, m_cparam.sc_grab_ymax, m_cparam.sc_grab_zmax, 1));
  106. }
  107. box_filter.setNegative(false);
  108. box_filter.setInputCloud(m_raw_cloud);
  109. box_filter.filter(*cloud_inbox);
  110. if (m_pLogger) {
  111. stringstream buff;
  112. buff << "CropBox croped point cloud " << cloud_inbox->width * cloud_inbox->height << " data points";
  113. m_pLogger->INFO(buff.str());
  114. }
  115. if (cloud_inbox->width * cloud_inbox->height < 1) {
  116. return 1;
  117. }
  118. if (m_cparam.image_show) {
  119. viewer_cloud(cloud_inbox, std::string("cloud_inbox"));
  120. }
  121. if (m_pLogger) {
  122. m_pLogger->INFO("end crop");
  123. }
  124. //3 filtler with radius remove
  125. if (m_pLogger) {
  126. m_pLogger->INFO("begin ror");
  127. }
  128. int nb_points = 20;
  129. double stem_radius = m_cparam.rs_grab_stem_diameter / 2.0;
  130. if(dtype != 0){
  131. stem_radius = m_cparam.sc_grab_stem_diameter / 2.0;
  132. }
  133. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ror(new pcl::PointCloud<pcl::PointXYZ>);
  134. pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror;
  135. ror.setInputCloud(cloud_inbox);
  136. ror.setRadiusSearch(stem_radius);
  137. ror.setMinNeighborsInRadius(nb_points);
  138. ror.filter(*cloud_ror);
  139. if (m_pLogger) {
  140. stringstream buff;
  141. buff << "RadiusOutlierRemoval filtered point cloud " << cloud_ror->width * cloud_ror->height << " data points. param stem_radius="<<
  142. stem_radius<<", nb_points="<< nb_points;
  143. m_pLogger->INFO(buff.str());
  144. }
  145. if (cloud_ror->width * cloud_ror->height < 1) {
  146. return 1;
  147. }
  148. if (m_cparam.image_show) {
  149. viewer_cloud(cloud_ror, std::string("cloud_ror"));
  150. }
  151. if (m_pLogger) {
  152. m_pLogger->INFO("end ror");
  153. }
  154. //3 voxel grid down sampling
  155. if (m_pLogger) {
  156. m_pLogger->INFO("begin down");
  157. }
  158. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_dowm_sampled(new pcl::PointCloud<pcl::PointXYZ>);
  159. pcl::VoxelGrid<pcl::PointXYZ> outrem;
  160. outrem.setInputCloud(cloud_ror);
  161. outrem.setLeafSize(stem_radius, stem_radius, stem_radius);
  162. outrem.filter(*cloud_dowm_sampled);
  163. if (m_pLogger) {
  164. stringstream buff;
  165. buff << "VoxelGrid dowm_sampled point cloud " << cloud_dowm_sampled->width * cloud_dowm_sampled->height << " data points";
  166. m_pLogger->INFO(buff.str());
  167. }
  168. if (cloud_dowm_sampled->width * cloud_dowm_sampled->height < 1) {
  169. return 1;
  170. }
  171. if (m_cparam.image_show) {
  172. viewer_cloud(cloud_dowm_sampled, std::string("cloud_dowm_sampled"));
  173. }
  174. if (m_pLogger) {
  175. m_pLogger->INFO("end down");
  176. }
  177. //4 seedling position
  178. std::vector<int> first_seedling_cloud_idx;
  179. pcl::PointXYZ xz_center;
  180. if (m_pLogger) {
  181. m_pLogger->INFO("begin find seedling position");
  182. }
  183. find_seedling_position(cloud_dowm_sampled, first_seedling_cloud_idx, xz_center);
  184. if (m_pLogger) {
  185. stringstream buff;
  186. buff << "after find_seedling_position(), foud first seedling seeds points size " << first_seedling_cloud_idx .size();
  187. m_pLogger->INFO(buff.str());
  188. }
  189. if (m_pLogger) {
  190. m_pLogger->INFO("end find seedling position");
  191. }
  192. //5 nearest seedling grab point selection
  193. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_seedling_seed(new pcl::PointCloud<pcl::PointXYZ>);
  194. pcl::copyPointCloud(*cloud_dowm_sampled, first_seedling_cloud_idx, *cloud_seedling_seed);
  195. std::vector<int>mass_idx;
  196. double dist_mean = compute_nearest_neighbor_distance(cloud_dowm_sampled);
  197. std::vector<double> mass_indices;
  198. if (m_pLogger) {
  199. m_pLogger->INFO("begin crop nn_analysis");
  200. }
  201. crop_nn_analysis(cloud_ror, cloud_seedling_seed, dist_mean, mass_indices, mass_idx);
  202. if (m_pLogger) {
  203. m_pLogger->INFO("end crop nn_analysis");
  204. }
  205. double candidate_th = otsu(mass_indices);
  206. std::vector<int> optimal_seeds_idx;
  207. for (size_t j = 0; j < mass_idx.size(); ++j) {
  208. if (mass_indices.at(mass_idx.at(j)) >= candidate_th) {
  209. optimal_seeds_idx.push_back(mass_idx.at(j));
  210. }
  211. }
  212. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_optimal_seed(new pcl::PointCloud<pcl::PointXYZ>);
  213. pcl::copyPointCloud(*cloud_seedling_seed, optimal_seeds_idx, *cloud_optimal_seed);
  214. pcl::PointXYZ selected_pt;
  215. int selected_pt_idx;
  216. if (m_pLogger) {
  217. m_pLogger->INFO("begin get_optimal_seed");
  218. }
  219. get_optimal_seed(cloud_optimal_seed, selected_pt, selected_pt_idx);
  220. if (selected_pt_idx < 0) {
  221. return 1;
  222. }
  223. if (m_pLogger) {
  224. m_pLogger->INFO("end get_optimal_seed");
  225. }
  226. posinfo.rs_grab_x = selected_pt.x;
  227. posinfo.rs_grab_y = selected_pt.y;
  228. posinfo.rs_grab_z = selected_pt.z;
  229. ////////////////////////////////////////////////////////////////////
  230. //debug
  231. if (m_cparam.image_show) {
  232. pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cand_demo(new pcl::PointCloud<pcl::PointXYZRGB>);
  233. pcl::copyPointCloud(*cloud_dowm_sampled, *cloud_cand_demo);
  234. for (auto& pt : *cloud_cand_demo) {
  235. pt.r = 255;
  236. pt.g = 255;
  237. pt.b = 255;
  238. }
  239. int cnt = 0;
  240. for (auto& idx : mass_idx) {
  241. int p_idx = first_seedling_cloud_idx.at(idx);
  242. /*if (p_idx == optimal_seeds_idx[selected_pt_idx]) {
  243. cloud_cand_demo->points[p_idx].r = 0;
  244. cloud_cand_demo->points[p_idx].g = 255;
  245. cloud_cand_demo->points[p_idx].b = 0;
  246. }
  247. else {*/
  248. cloud_cand_demo->points.at(p_idx).r = 255;
  249. cloud_cand_demo->points.at(p_idx).g = 0;
  250. cloud_cand_demo->points.at(p_idx).b = 0;
  251. /*} */
  252. if (cnt > optimal_seeds_idx.size()) { break; }
  253. cnt++;
  254. }
  255. pcl::PointXYZRGB pt_grab = {0,255,0};
  256. pt_grab.x = selected_pt.x;
  257. pt_grab.y = selected_pt.y;
  258. pt_grab.z = selected_pt.z;
  259. pcl::PointXYZRGB pt_grab_ = { 0,255,120 };
  260. pt_grab_.x = selected_pt.x;
  261. pt_grab_.y = selected_pt.y+0.2;
  262. pt_grab_.z = selected_pt.z;
  263. cloud_cand_demo->push_back(pt_grab);
  264. //viewer_cloud(cloud_cand_demo, std::string("cloud_cand_demo"));
  265. viewer_cloud_debug(cloud_cand_demo, selected_pt, std::string("cloud_cand_demo"));
  266. }
  267. return 0;
  268. }
  269. int CRootStockGrabPoint::read_ply_file(const char* fn)
  270. {
  271. m_raw_cloud.reset( new pcl::PointCloud<pcl::PointXYZ>);
  272. if (pcl::io::loadPLYFile<pcl::PointXYZ>(fn, *m_raw_cloud) == -1) {
  273. if (m_pLogger) {
  274. m_pLogger->ERRORINFO("could not load file: "+std::string(fn));
  275. }
  276. return (-1);
  277. }
  278. if (m_pLogger) {
  279. stringstream buff;
  280. buff << "load raw point cloud " << m_raw_cloud->width * m_raw_cloud->height << " data points";
  281. m_pLogger->INFO(buff.str());
  282. }
  283. return m_raw_cloud->width * m_raw_cloud->height;
  284. }
  285. double CRootStockGrabPoint::compute_nearest_neighbor_distance(pcl::PointCloud<pcl::PointXYZ>::Ptr pcd)
  286. {
  287. pcl::KdTreeFLANN<pcl::PointXYZ> tree;
  288. tree.setInputCloud(pcd);
  289. int k = 2;
  290. double res = 0.0;
  291. int n_points = 0;
  292. for (size_t i = 0; i < pcd->size(); ++i) {
  293. std::vector<int> idx(k);
  294. std::vector<float> sqr_distances(k);
  295. if (tree.nearestKSearch(i, k, idx, sqr_distances) == k) {
  296. for (int id = 1; id < k; ++id) {
  297. res += sqrt(sqr_distances.at(id));
  298. ++n_points;
  299. }
  300. }
  301. }
  302. if (n_points > 0) {
  303. res /= (double)n_points;
  304. }
  305. return res;
  306. }
  307. void CRootStockGrabPoint::find_seedling_position(
  308. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  309. std::vector<int> &first_seedling_cloud_idx,
  310. pcl::PointXYZ&xz_center
  311. )
  312. {
  313. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d(new pcl::PointCloud < pcl::PointXYZ>);
  314. pcl::copyPointCloud(*in_cloud, *cloud2d);
  315. for (auto&pt : *cloud2d) {
  316. pt.y = 0.0;
  317. }
  318. if(m_cparam.image_show){
  319. viewer_cloud(cloud2d, std::string("cloud2d"));
  320. }
  321. double radius = m_cparam.rs_grab_stem_diameter;
  322. if (m_dtype != 0) {
  323. radius = m_cparam.sc_grab_stem_diameter;
  324. }
  325. std::vector<int> counter;
  326. pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
  327. kdtree.setInputCloud(cloud2d);
  328. std::vector<int>idx;
  329. std::vector<float>dist_sqr;
  330. for (size_t i = 0; i < cloud2d->points.size(); ++i) {
  331. int k = kdtree.radiusSearch(cloud2d->points.at(i), radius, idx, dist_sqr);
  332. counter.push_back(k);
  333. }
  334. int th = (int)(otsu(counter));
  335. std::vector<int> index;
  336. for (size_t i = 0; i < counter.size(); ++i) {
  337. if (counter.at(i) >= th) {
  338. index.push_back(i);
  339. }
  340. }
  341. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2d_pos(new pcl::PointCloud < pcl::PointXYZ>);
  342. pcl::copyPointCloud(*cloud2d, index, *cloud2d_pos);
  343. if (m_pLogger) {
  344. stringstream buff;
  345. buff << "get 2d seedling seed point cloud " << index.size()<< " data points with thrreshold "<<th;
  346. m_pLogger->INFO(buff.str());
  347. }
  348. if (m_cparam.image_show) {
  349. viewer_cloud(cloud2d_pos, std::string("cloud2d_pos"));
  350. }
  351. //clustering
  352. double d1 = m_cparam.rs_grab_stem_diameter;
  353. double d2 = m_cparam.rs_grab_stem_diameter * 3.0;
  354. if (m_dtype != 0) {
  355. d1 = m_cparam.sc_grab_stem_diameter;
  356. d2 = m_cparam.sc_grab_stem_diameter * 3.0;
  357. }
  358. std::vector<pcl::PointXYZ>cluster_center;
  359. std::vector<std::vector<int>> cluster_member;
  360. euclidean_clustering_ttsas(cloud2d_pos, d1, d2, cluster_center, cluster_member);
  361. if (m_pLogger) {
  362. stringstream buff;
  363. buff << "euclidean_clustering_ttsas: " << cluster_center.size() << " t1=" << d1
  364. << " t2=" << d2;
  365. m_pLogger->INFO(buff.str());
  366. }
  367. //sort cluster center, get the frontest leftest one
  368. std::vector<float> cluster_index;
  369. for (auto&pt : cluster_center) {
  370. float idx = pt.x - pt.z;
  371. cluster_index.push_back(idx);
  372. }
  373. int first_idx = std::min_element(cluster_index.begin(), cluster_index.end()) - cluster_index.begin();
  374. first_seedling_cloud_idx.clear();
  375. for (auto&v : cluster_member.at(first_idx)) {
  376. size_t i = index.at(v);
  377. first_seedling_cloud_idx.push_back(i);
  378. }
  379. xz_center.x = cluster_center.at(first_idx).x;
  380. xz_center.y = cluster_center.at(first_idx).y;
  381. xz_center.z = cluster_center.at(first_idx).z;
  382. if (m_pLogger) {
  383. stringstream buff;
  384. buff << "euclidean_clustering_ttsas, find cluster center(" << xz_center.x
  385. <<", "<< xz_center.y<<", "<< xz_center.z<<")";
  386. m_pLogger->INFO(buff.str());
  387. }
  388. }
  389. void CRootStockGrabPoint::crop_nn_analysis(
  390. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  391. pcl::PointCloud<pcl::PointXYZ>::Ptr seed_cloud,
  392. double dist_mean,
  393. std::vector<double>&mass_indices,
  394. std::vector<int>& candidate_idx
  395. )
  396. {
  397. candidate_idx.clear();
  398. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox(new pcl::PointCloud<pcl::PointXYZ>);
  399. pcl::CropBox<pcl::PointXYZ> box_filter;
  400. box_filter.setNegative(false);
  401. box_filter.setInputCloud(in_cloud);
  402. double radius = 5;
  403. double rx = 0.8;
  404. double ry = 1.0;
  405. double rz = 0.8;
  406. double cx, cy, cz;
  407. double dz;
  408. for (size_t i = 0; i < seed_cloud->points.size(); ++i) {
  409. cx = seed_cloud->points.at(i).x;
  410. cy = seed_cloud->points.at(i).y;
  411. cz = seed_cloud->points.at(i).z;
  412. box_filter.setMin(Eigen::Vector4f(cx - rx*radius, cy - ry*radius, cz - rz*radius, 1));
  413. box_filter.setMax(Eigen::Vector4f(cx + rx*radius, cy + ry*radius, cz + rz*radius, 1));
  414. box_filter.filter(*cloud_inbox);
  415. //dz
  416. Eigen::Vector4f min_point;
  417. Eigen::Vector4f max_point;
  418. pcl::getMinMax3D(*cloud_inbox, min_point, max_point);
  419. dz = max_point(2) - min_point(2);
  420. //project to xy-plane
  421. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_inbox_xy(new pcl::PointCloud<pcl::PointXYZ>);
  422. pcl::copyPointCloud(*cloud_inbox, *cloud_inbox_xy);
  423. for (auto&pt : *cloud_inbox_xy) { pt.z = 0.0; }
  424. //pca
  425. double dx_obb;
  426. double dy_obb;
  427. double angle_obb;
  428. cal_obb_2d(cloud_inbox_xy, 0, dx_obb, dy_obb, angle_obb);
  429. try {
  430. double dx_grid = dx_obb / dist_mean;
  431. double dy_grid = dy_obb / dist_mean;
  432. double dz_grid = dz / dist_mean;
  433. double fill_ratio = cloud_inbox->points.size() / dx_grid / dy_grid / dz_grid;
  434. double y_ratio = dy_obb / dx_obb/2;
  435. y_ratio = pow(y_ratio, 2);
  436. double a_ratio = cos((angle_obb - 90)*PI / 180.0);
  437. a_ratio = pow(a_ratio, 3);
  438. double mass_index = fill_ratio*y_ratio*a_ratio;
  439. mass_indices.push_back(mass_index);
  440. if (m_pLogger) {
  441. stringstream buff;
  442. buff << i << "/" << seed_cloud->points.size() << " dx=" << dx_obb << ", dy=" << dy_obb << ", fill_ratio=" << fill_ratio
  443. << ", y_ratio=" << y_ratio << ", a_ratio=" << a_ratio << ", mass_index=" << mass_index;
  444. m_pLogger->INFO(buff.str());
  445. }
  446. }
  447. catch (...) {
  448. mass_indices.push_back(0);
  449. }
  450. }
  451. // sort by mass_indices
  452. std::vector<size_t> sort_idx = sort_indexes_e(mass_indices, false);
  453. for (auto&v : sort_idx) { candidate_idx.push_back((int)v); }
  454. }
  455. void CRootStockGrabPoint::euclidean_clustering_ttsas(
  456. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  457. double d1, double d2,
  458. std::vector<pcl::PointXYZ>&cluster_center,
  459. std::vector<std::vector<int>> &clustr_member
  460. )
  461. {
  462. if (m_pLogger) {
  463. stringstream buff;
  464. buff << "euclidean_clustering_ttsas() begin...";
  465. m_pLogger->INFO(buff.str());
  466. }
  467. std::vector<int> cluster_weight;
  468. std::vector<int> data_stat;
  469. for (size_t i = 0; i < in_cloud->points.size(); ++i) { data_stat.push_back(0); }
  470. size_t data_len = in_cloud->points.size();
  471. int exists_change = 0;
  472. int prev_change = 0;
  473. int cur_change = 0;
  474. int m = 0;
  475. while (std::find(data_stat.begin(), data_stat.end(), 0) != data_stat.end()) {
  476. bool new_while_first = true;
  477. for (size_t i = 0; i < data_len; ++i) {
  478. if (data_stat.at(i) == 0 && new_while_first && exists_change == 0) {
  479. new_while_first = false;
  480. std::vector<int> idx;
  481. idx.push_back(i);
  482. clustr_member.push_back(idx);
  483. pcl::PointXYZ center;
  484. center.x = in_cloud->points.at(i).x;
  485. center.y = in_cloud->points.at(i).y;
  486. center.z = in_cloud->points.at(i).z;
  487. cluster_center.push_back(center);
  488. data_stat.at(i) = 1;
  489. cur_change += 1;
  490. cluster_weight.push_back(1);
  491. m += 1;
  492. }
  493. else if (data_stat[i] == 0) {
  494. std::vector<float> distances;
  495. for (size_t j = 0; j < clustr_member.size(); ++j) {
  496. std::vector<float> distances_sub;
  497. for (size_t jj = 0; jj < clustr_member.at(j).size(); ++jj) {
  498. size_t ele_idx = clustr_member.at(j).at(jj);
  499. double d = sqrt(
  500. (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) * (in_cloud->points.at(i).x - in_cloud->points.at(ele_idx).x) +
  501. (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) * (in_cloud->points.at(i).y - in_cloud->points.at(ele_idx).y) +
  502. (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z) * (in_cloud->points.at(i).z - in_cloud->points.at(ele_idx).z));
  503. distances_sub.push_back(d);
  504. }
  505. double min_dist = *std::min_element(distances_sub.begin(), distances_sub.end());
  506. distances.push_back(min_dist);
  507. }
  508. int min_idx = std::min_element(distances.begin(), distances.end()) - distances.begin();
  509. if (distances.at(min_idx) < d1) {
  510. data_stat.at(i) = 1;
  511. double w = cluster_weight.at(min_idx);
  512. cluster_weight.at(min_idx) += 1;
  513. clustr_member.at(min_idx).push_back(i);
  514. cluster_center.at(min_idx).x = (cluster_center.at(min_idx).x * w + in_cloud->points.at(i).x) / (w + 1);
  515. cluster_center.at(min_idx).y = (cluster_center.at(min_idx).y * w + in_cloud->points.at(i).y) / (w + 1);
  516. cluster_center.at(min_idx).z = (cluster_center.at(min_idx).z * w + in_cloud->points.at(i).z) / (w + 1);
  517. cur_change += 1;
  518. }
  519. else if (distances.at(min_idx) > d2) {
  520. std::vector<int> idx;
  521. idx.push_back(i);
  522. clustr_member.push_back(idx);
  523. pcl::PointXYZ center;
  524. center.x = in_cloud->points.at(i).x;
  525. center.y = in_cloud->points.at(i).y;
  526. center.z = in_cloud->points.at(i).z;
  527. cluster_center.push_back(center);
  528. data_stat.at(i) = 1;
  529. cur_change += 1;
  530. cluster_weight.push_back(1);
  531. m += 1;
  532. }
  533. }
  534. else if (data_stat.at(i)== 1) {
  535. cur_change += 1;
  536. }
  537. }
  538. exists_change = fabs(cur_change - prev_change);
  539. prev_change = cur_change;
  540. cur_change = 0;
  541. }
  542. if (m_pLogger) {
  543. stringstream buff;
  544. buff << "euclidean_clustering_ttsas() end";
  545. m_pLogger->INFO(buff.str());
  546. }
  547. }
  548. void CRootStockGrabPoint::cal_obb_2d(
  549. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  550. int axis, //0--xy, 1--zy
  551. double &dx_obb,
  552. double &dy_obb,
  553. double &angle_obb
  554. )
  555. {
  556. // asign value
  557. Eigen::MatrixXd pts(in_cloud->points.size(), 2);
  558. for (size_t i = 0; i < in_cloud->points.size(); ++i) {
  559. if (axis == 0) {
  560. pts(i, 0) = in_cloud->points.at(i).x;
  561. }
  562. else {
  563. pts(i, 0) = in_cloud->points.at(i).z;
  564. }
  565. pts(i, 1) = in_cloud->points.at(i).y;
  566. }
  567. // centerlize
  568. Eigen::MatrixXd mu = pts.colwise().mean();
  569. Eigen::RowVectorXd mu_row = mu;
  570. pts.rowwise() -= mu_row;
  571. //calculate covariance
  572. Eigen::MatrixXd C = pts.adjoint()*pts;
  573. C = C.array() / (pts.cols() - 1);
  574. //compute eig
  575. Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eig(C);
  576. Eigen::MatrixXd d = eig.eigenvalues();
  577. Eigen::MatrixXd v = eig.eigenvectors();
  578. //projection
  579. Eigen::MatrixXd p = pts * v;
  580. Eigen::VectorXd minv = p.colwise().minCoeff();
  581. Eigen::VectorXd maxv = p.colwise().maxCoeff();
  582. Eigen::VectorXd range = maxv - minv;
  583. dy_obb = range(1);
  584. dx_obb = range(0);
  585. angle_obb = std::atan2(v(1, 1), v(0, 1));
  586. if (angle_obb < 0) { angle_obb = PI + angle_obb; }
  587. angle_obb = angle_obb * 180 / PI;
  588. }
  589. //void CRootStockGrabPoint::get_optimal_seed(
  590. // pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  591. // pcl::PointXYZ&pt,
  592. // int &pt_idx)
  593. //{
  594. // double d1 = m_cparam.rs_grab_stem_diameter;
  595. // double d2 = m_cparam.rs_grab_stem_diameter * 4.0;
  596. // if (m_dtype != 0) {
  597. // d1 = m_cparam.sc_grab_stem_diameter;
  598. // d2 = m_cparam.sc_grab_stem_diameter * 4.0;
  599. // }
  600. // std::vector<pcl::PointXYZ>cluster_center;
  601. // std::vector<std::vector<int>> cluster_member;
  602. // euclidean_clustering_ttsas(in_cloud, d1, d2, cluster_center, cluster_member);
  603. // float min_y_dist = 1.0e6;
  604. // int opt_idx = -1;
  605. // int member_size = 5;
  606. // float y_opt = m_cparam.rs_grab_y_opt;
  607. // if (m_dtype != 0) {
  608. // y_opt = m_cparam.sc_grab_y_opt;
  609. // }
  610. // for (int i = 0; i < cluster_member.size(); ++i) {
  611. // if (cluster_member.at(i).size() < member_size) {
  612. // continue;
  613. // }
  614. // if (fabs(cluster_center.at(i).y -y_opt) < min_y_dist) {
  615. // min_y_dist = fabs(cluster_center.at(i).y - y_opt);
  616. // opt_idx = i;
  617. // }
  618. // }
  619. // if (opt_idx < 0) {
  620. // if (m_pLogger) {
  621. // stringstream buff;
  622. // buff << "get_optimal_seed failed, get invalid optimal cluster id";
  623. // m_pLogger->ERRORINFO(buff.str());
  624. // }
  625. // return;
  626. // }
  627. // //find nearest pt
  628. // float nearest_dist = 1.0e6;
  629. // int nearest_idx = -1;
  630. // for (int i = 0; i < cluster_member.at(opt_idx).size(); ++i) {
  631. // int idx = cluster_member.at(opt_idx).at(i);
  632. // float dist = fabs(in_cloud->points.at(idx).x - cluster_center.at(opt_idx).x) +
  633. // fabs(in_cloud->points.at(idx).y - cluster_center.at(opt_idx).y) +
  634. // fabs(in_cloud->points.at(idx).z - cluster_center.at(opt_idx).z);
  635. // if (dist < nearest_dist) {
  636. // nearest_dist = dist;
  637. // nearest_idx = idx;
  638. // }
  639. // }
  640. // pt.x = in_cloud->points.at(nearest_idx).x;
  641. // pt.y = in_cloud->points.at(nearest_idx).y;
  642. // pt.z = in_cloud->points.at(nearest_idx).z;
  643. // pt_idx = nearest_idx;
  644. //}
  645. void CRootStockGrabPoint::get_optimal_seed(
  646. pcl::PointCloud<pcl::PointXYZ>::Ptr in_cloud,
  647. pcl::PointXYZ&pt,
  648. int &pt_idx)
  649. {
  650. /*double d1 = m_cparam.rs_grab_stem_diameter;
  651. double d2 = m_cparam.rs_grab_stem_diameter * 4.0;
  652. if (m_dtype != 0) {
  653. d1 = m_cparam.sc_grab_stem_diameter;
  654. d2 = m_cparam.sc_grab_stem_diameter * 4.0;
  655. }
  656. std::vector<pcl::PointXYZ>cluster_center;
  657. std::vector<std::vector<int>> cluster_member;
  658. euclidean_clustering_ttsas(in_cloud, d1, d2, cluster_center, cluster_member);*/
  659. float min_y_dist = 1.0e6;
  660. int opt_idx = -1;
  661. int member_size = 5;
  662. float y_opt = m_cparam.rs_grab_y_opt;
  663. if (m_dtype != 0) {
  664. y_opt = m_cparam.sc_grab_y_opt;
  665. }
  666. for (int i = 0; i < in_cloud->points.size(); ++i) {
  667. /*if (cluster_member.at(i).size() < member_size) {
  668. continue;
  669. }*/
  670. if (fabs(in_cloud->points.at(i).y - y_opt) < min_y_dist) {
  671. min_y_dist = fabs(in_cloud->points.at(i).y - y_opt);
  672. opt_idx = i;
  673. }
  674. }
  675. if (opt_idx < 0) {
  676. if (m_pLogger) {
  677. stringstream buff;
  678. buff << "get_optimal_seed failed, get invalid optimal cluster id";
  679. m_pLogger->ERRORINFO(buff.str());
  680. }
  681. return;
  682. }
  683. //find nearest pt
  684. /*float nearest_dist = 1.0e6;
  685. int nearest_idx = -1;
  686. for (int i = 0; i < cluster_member.at(opt_idx).size(); ++i) {
  687. int idx = cluster_member.at(opt_idx).at(i);
  688. float dist = fabs(in_cloud->points.at(idx).x - cluster_center.at(opt_idx).x) +
  689. fabs(in_cloud->points.at(idx).y - cluster_center.at(opt_idx).y) +
  690. fabs(in_cloud->points.at(idx).z - cluster_center.at(opt_idx).z);
  691. if (dist < nearest_dist) {
  692. nearest_dist = dist;
  693. nearest_idx = idx;
  694. }
  695. }*/
  696. pt.x = in_cloud->points.at(opt_idx).x;
  697. pt.y = in_cloud->points.at(opt_idx).y;
  698. pt.z = in_cloud->points.at(opt_idx).z;
  699. pt_idx = opt_idx;
  700. }
  701. void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, std::string&winname)
  702. {
  703. pcl::visualization::CloudViewer viewer(winname);
  704. //viewer.runOnVisualizationThreadOnce(viewerOneOff);
  705. viewer.showCloud(cloud);
  706. while (!viewer.wasStopped()) {
  707. boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  708. }
  709. }
  710. void CRootStockGrabPoint::viewer_cloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, std::string&winname)
  711. {
  712. pcl::visualization::CloudViewer viewer(winname);
  713. //viewer.runOnVisualizationThreadOnce(viewerOneOff);
  714. viewer.showCloud(cloud);
  715. while (!viewer.wasStopped()) {
  716. boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  717. }
  718. }
  719. void CRootStockGrabPoint::viewer_cloud_debug(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, pcl::PointXYZ &p, std::string&winname)
  720. {
  721. pcl::visualization::PCLVisualizer viewer(winname);
  722. //viewer.runOnVisualizationThreadOnce(viewerOneOff);
  723. viewer.addPointCloud(cloud);
  724. viewer.addCoordinateSystem();
  725. pcl::PointXYZ p0, x1, y1,p00,x0,y0;
  726. p0.x = p.x;
  727. p0.y = p.y;
  728. p0.z = p.z;
  729. x1.x = p.x + 400.0;
  730. x1.y = p.y;
  731. x1.z = p.z;
  732. y1.x = p.x;
  733. y1.y = p.y + 200.0;
  734. y1.z = p.z;
  735. p00.x = 0.0;
  736. p00.y = 0.0;
  737. p00.z = p.z;
  738. x0.x = 600.0;
  739. x0.y = 0;
  740. x0.z = p.z;
  741. y0.x = 0.0;
  742. y0.y = 300.0;
  743. y0.z = p.z;
  744. viewer.addLine(p0, x1, 255, 0, 0, "x");
  745. viewer.addLine(p0, y1, 0, 255, 0, "y");
  746. viewer.addLine(p00, x0, 255, 0, 0, "x0");
  747. viewer.addLine(p00, y0, 0, 255, 0, "y0");
  748. while (!viewer.wasStopped()) {
  749. viewer.spinOnce(100);
  750. boost::this_thread::sleep(boost::posix_time::microseconds(100000));
  751. }
  752. }
  753. };