tea_sorter.cpp 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809
  1. #include <opencv.hpp>
  2. #include <math.h>
  3. #include <io.h>
  4. #include "tea_sorter.h"
  5. #include "utils.h"
  6. using namespace cv;
  7. namespace graft_cv{
  8. CTeaSort::CTeaSort(
  9. ConfigParam& cp,
  10. img_type dtpye,
  11. CGcvLogger*pLog)
  12. :
  13. m_cp(cp),
  14. m_dtype(dtpye),
  15. m_pLogger(pLog),
  16. m_ppImgSaver(0),
  17. m_pImginfoRaw(0),
  18. m_pImginfoDetected(0)
  19. {
  20. m_drop_detector = YoloDrop(m_pLogger, 0.5, 0.5);
  21. }
  22. CTeaSort::~CTeaSort()
  23. {
  24. clear_imginfo();
  25. }
  26. int CTeaSort::detect(
  27. ImgInfo*imginfo,
  28. PositionInfo& posinfo,
  29. const char* fn
  30. )
  31. {
  32. //1 model status
  33. if (!m_drop_detector.IsModelLoaded()) {
  34. m_pLogger->ERRORINFO(
  35. string("tea detect model NOT loaded"));
  36. return 1;
  37. }
  38. //2 update recognize threshold
  39. if (m_dtype == img_type::tea_grab) {
  40. m_drop_detector.SetThreshold(m_cp.object_threshold_grab, m_cp.nms_threshold_grab);
  41. }
  42. else {
  43. m_drop_detector.SetThreshold(m_cp.object_threshold_cut, m_cp.nms_threshold_cut);
  44. }
  45. //3 load data
  46. load_data(imginfo, fn);
  47. if (m_cp.image_show) {
  48. cv::destroyAllWindows();
  49. imshow_wait("input_img", m_raw_img);
  50. }
  51. //4 generate_detect_windows(vector<Rect>&boxes)
  52. vector<Rect> drop_regions;
  53. int region_cnt = generate_detect_windows(drop_regions);
  54. if (region_cnt == 0) {
  55. stringstream buff_;
  56. buff_ << m_imgId << m_dtype_str << "tea detect image regions' size == 0";
  57. m_pLogger->ERRORINFO(buff_.str());
  58. return 1;
  59. }
  60. else {
  61. stringstream bufftmp;
  62. bufftmp << m_imgId << m_dtype_str << "tea detect image regions' size = "<<region_cnt;
  63. m_pLogger->INFO(bufftmp.str());
  64. }
  65. if (m_cp.image_show) {
  66. cv::Mat rects_img = m_raw_img.clone();
  67. int step_c = int(255 / (float)region_cnt);
  68. int step_cc = step_c / 2;
  69. int step_ccc = step_cc / 2;
  70. int cnt = 0;
  71. for (auto&r : drop_regions) {
  72. cv::rectangle(rects_img, r, cv::Scalar(step_cc*cnt, step_c*cnt, step_ccc*cnt), 3);
  73. cnt += 1;
  74. }
  75. imshow_wait("regions_img", rects_img);
  76. }
  77. //5 empty feeder dection
  78. if (m_dtype == img_type::tea_grab) {
  79. bool is_empty = is_empty_feeder(m_raw_gray_img);
  80. if (is_empty) {
  81. stringstream bufftmp;
  82. bufftmp << m_imgId << m_dtype_str << "empty feeder" ;
  83. m_pLogger->INFO(bufftmp.str());
  84. //拍照无苗, 返回识别结果-1
  85. return -1;
  86. }
  87. }
  88. //6 detect
  89. vector<Bbox> droplets_raw;
  90. int dn = detect_impl(m_raw_img, drop_regions, droplets_raw);
  91. if (m_dtype == img_type::tea_grab) {
  92. //up-down flip
  93. cv::Mat flip_img;
  94. cv::flip(m_raw_img, flip_img, 0);
  95. if (m_cp.image_show) {
  96. imshow_wait("flip_img", flip_img);
  97. }
  98. vector<Bbox> droplets_flip;
  99. int dn_flip = detect_impl(flip_img, drop_regions, droplets_flip);
  100. for (auto&b: droplets_flip) {
  101. int y2 = flip_img.rows - b.y1;
  102. int y1 = flip_img.rows - b.y2;
  103. b.y1 = y1;
  104. b.y2 = y2;
  105. for (int i = 0; i < 5; ++i) {
  106. b.ppoint[2 * i + 1] = flip_img.rows - b.ppoint[2 * i + 1];
  107. }
  108. }
  109. if (dn_flip > 0) {
  110. droplets_raw.insert(
  111. droplets_raw.end(),
  112. droplets_flip.begin(),
  113. droplets_flip.end());
  114. }
  115. }
  116. if (m_pLogger) {
  117. stringstream buff_;
  118. buff_ << m_imgId<<m_dtype_str << "image detect over. tea number is " << droplets_raw.size();
  119. m_pLogger->INFO(buff_.str());
  120. }
  121. //7 nms, width(height) filt and area calculation
  122. vector<Bbox> droplets;
  123. vector<int> keep;
  124. nms_bbox(droplets_raw, m_drop_detector.GetNmsThreshold(), keep);
  125. if (m_pLogger) {
  126. stringstream buff_;
  127. buff_ << m_imgId << m_dtype_str << "after nms_bbox, keep size is " << keep.size();
  128. m_pLogger->INFO(buff_.str());
  129. }
  130. //nms keep and area filter
  131. double min_area_th = m_cp.min_area_ratio_grab;
  132. double max_area_th = m_cp.max_area_ratio_grab;
  133. if (m_dtype == img_type::tea_cut) {
  134. min_area_th = m_cp.min_area_ratio_cut;
  135. max_area_th = m_cp.max_area_ratio_cut;
  136. }
  137. for (int i : keep) {
  138. Bbox&tbox = droplets_raw[i];
  139. double area_ratio = static_cast<double>(tbox.y2 - tbox.y1) * static_cast<double>(tbox.x2 - tbox.x1);
  140. area_ratio = fabs(area_ratio);
  141. area_ratio /= static_cast<double>(m_raw_img.rows);
  142. area_ratio /= static_cast<double>(m_raw_img.cols);
  143. tbox.area = area_ratio;
  144. if (m_pLogger) {
  145. stringstream buff_;
  146. buff_ << m_imgId << m_dtype_str << "object's area ratio is " << area_ratio<<", range is ["<< min_area_th<<", "<< max_area_th <<"]";
  147. m_pLogger->INFO(buff_.str());
  148. }
  149. if (area_ratio < min_area_th || area_ratio > max_area_th) {
  150. continue;
  151. }
  152. //检查box边界是否在图像内,如果没有,修改之
  153. if (tbox.x1 < 0) { tbox.x1 = 0; }
  154. if (tbox.y1 < 0) { tbox.y1 = 0; }
  155. if (tbox.x2 >= m_raw_img.cols) { tbox.x2 = m_raw_img.cols - 1; }
  156. if (tbox.y2 >= m_raw_img.rows) { tbox.y2 = m_raw_img.rows - 1; }
  157. droplets.push_back(tbox);
  158. }
  159. if (m_pLogger) {
  160. stringstream buff_;
  161. buff_ << m_imgId << m_dtype_str << "after nms, keep tea number is " << droplets.size();
  162. for (auto&tbox : droplets) {
  163. buff_ << "\nscore:" << tbox.score << ", area_ratio:" << tbox.area << ", left_top:(" << tbox.x1 << "," << tbox.y1 << "), bottom_rigt:(" << tbox.x2 << "," << tbox.y2 << ")";
  164. }
  165. m_pLogger->INFO(buff_.str());
  166. }
  167. int valid_cnt = 0;
  168. if (m_dtype == img_type::tea_grab) {
  169. //grab
  170. calculate_overall_score_grab(droplets);//通过综合得分排序
  171. double pre_cx, pre_cy;
  172. double min_dist_grab = m_cp.min_distance_grab;
  173. pre_cx = -min_dist_grab;
  174. pre_cy = -min_dist_grab;
  175. for (int i = 0; i < droplets.size(); ++i) {
  176. if (valid_cnt > 1) { break; }
  177. Bbox&b = droplets.at(i);
  178. double cx = 0.5*(b.x1 + b.x2);
  179. double cy = 0.5*(b.y1 + b.y2);
  180. double dist = sqrt((cx - pre_cx)*(cx - pre_cx) + (cy - pre_cy)*(cy - pre_cy));
  181. if (dist < min_dist_grab) {
  182. continue;
  183. }
  184. double grab_x, grab_y;
  185. double angle = calculate_angle(b,/* true, */grab_x, grab_y);
  186. //grab point
  187. if (valid_cnt == 0) {
  188. posinfo.tea_grab_x1 = grab_x;
  189. posinfo.tea_grab_y1 = grab_y;
  190. posinfo.tea_grab_angle1 = angle;
  191. }
  192. else {
  193. posinfo.tea_grab_x2 = grab_x;
  194. posinfo.tea_grab_y2 = grab_y;
  195. posinfo.tea_grab_angle2 = angle;
  196. }
  197. b.operate_point[0] = grab_x;
  198. b.operate_point[1] = grab_y;
  199. b.operate_angle = angle;
  200. b.status = 1;
  201. pre_cx = cx;
  202. pre_cy = cy;
  203. valid_cnt += 1;
  204. }
  205. }
  206. else {
  207. //cut
  208. for (int i = 0; i < droplets.size();++i) {
  209. if (i > 1) { break; }
  210. Bbox&b = droplets.at(i);
  211. double grab_x, grab_y;
  212. double angle = calculate_angle(b,/* true,*/ grab_x, grab_y);
  213. valid_cnt += 1;
  214. if (i == 0) {
  215. // 切割点是3、4的中间的点
  216. posinfo.tea_cut_x1 = grab_x;
  217. posinfo.tea_cut_y1 = grab_y;
  218. posinfo.tea_cut_angle1 = angle;
  219. }
  220. else {
  221. // 切割点是3、4的中间的点
  222. posinfo.tea_cut_x2 = grab_x;
  223. posinfo.tea_cut_y2 = grab_y;
  224. posinfo.tea_cut_angle2 = angle;
  225. }
  226. b.operate_point[0] = grab_x;
  227. b.operate_point[1] = grab_y;
  228. b.operate_angle = angle;
  229. b.status = 1; // selected
  230. }
  231. }
  232. //8 draw
  233. if (m_cp.image_return) {
  234. this->clear_imginfo();
  235. cv::Mat img_rst = m_raw_img.clone();
  236. for (auto& b : droplets) {
  237. //rectangle
  238. cv::Rect r = cv::Rect(cv::Point2i(b.x1, b.y1), cv::Point2i(b.x2, b.y2));
  239. if (b.status > 0) {
  240. cv::rectangle(img_rst, r, cv::Scalar(0, 0, 255),2);
  241. }
  242. else {
  243. cv::rectangle(img_rst, r, cv::Scalar(0, 255, 0),2);
  244. }
  245. //score
  246. char name[256];
  247. cv::Scalar color(120, 120, 0);//bgr
  248. sprintf_s(name, "%.2f - %.2f", b.score, b.score_overall);
  249. cv::putText(img_rst, name,
  250. cv::Point(b.x1, b.y1),
  251. cv::FONT_HERSHEY_COMPLEX, 0.7, color, 2);
  252. //points
  253. cv::circle(img_rst, cv::Point(int(b.ppoint[0]), int(b.ppoint[1])), 4, cv::Scalar(255, 0, 255), -1, 3, 0);
  254. cv::circle(img_rst, cv::Point(int(b.ppoint[2]), int(b.ppoint[3])), 4, cv::Scalar(0, 255, 255), -1, 3, 0);
  255. cv::circle(img_rst, cv::Point(int(b.ppoint[4]), int(b.ppoint[5])), 4, cv::Scalar(255, 0, 0), -1, 3, 0);
  256. cv::circle(img_rst, cv::Point(int(b.ppoint[6]), int(b.ppoint[7])), 4, cv::Scalar(0, 255, 0), -1, 3, 0);
  257. cv::circle(img_rst, cv::Point(int(b.ppoint[8]), int(b.ppoint[9])), 4, cv::Scalar(0, 0, 255), -1, 3, 0);
  258. //grab points
  259. if (m_dtype == img_type::tea_grab) {
  260. if (b.status == 1) {
  261. double grab_x, grab_y, grab_angle;
  262. grab_x = b.operate_point[0];
  263. grab_y = b.operate_point[1];
  264. grab_angle = b.operate_angle;
  265. //bool need_precise = b.status == 1;
  266. //double grab_angle = calculate_angle(b, /*need_precise,*/ grab_x, grab_y);
  267. //cv::circle(img_rst, cv::Point(int(grab_x), int(grab_y)), 4, cv::Scalar(0, 215, 255), -1, 3, 0);
  268. //lines, p4-p5, p5-grab
  269. cv::line(img_rst,
  270. cv::Point(int(b.ppoint[6]), int(b.ppoint[7])),
  271. cv::Point(int(b.ppoint[8]), int(b.ppoint[9])),
  272. cv::Scalar(0, 215, 255), 2);
  273. cv::line(img_rst,
  274. cv::Point(int(b.ppoint[8]), int(b.ppoint[9])),
  275. cv::Point(int(grab_x), int(grab_y)),
  276. cv::Scalar(0, 215, 255), 2);
  277. //line x
  278. int radius = 20;
  279. int cx = int(grab_x);
  280. int cy = int(grab_y);
  281. cv::line(img_rst, cv::Point(cx - radius, cy - radius), cv::Point(cx + radius, cy + radius), cv::Scalar(0, 215, 255), 2);
  282. cv::line(img_rst, cv::Point(cx - radius, cy + radius), cv::Point(cx + radius, cy - radius), cv::Scalar(0, 215, 255), 2);
  283. //grab point angle
  284. int radius_dir = m_cp.offset_grab / 2;
  285. grab_angle *= (CV_PI / 180.0);
  286. double dx = radius_dir * sin(grab_angle);
  287. double dy = radius_dir * cos(grab_angle);
  288. int dir_x = int(grab_x + dx);
  289. int dir_y = int(grab_y + dy);
  290. cv::line(img_rst, cv::Point(cx, cy), cv::Point(dir_x, dir_y), cv::Scalar(20, 255, 20), 2);
  291. }
  292. }
  293. //cut points
  294. if (m_dtype == img_type::tea_cut) {
  295. //lines, p2-p3
  296. cv::line(img_rst,
  297. cv::Point(int(b.ppoint[2]), int(b.ppoint[3])),
  298. cv::Point(int(b.ppoint[4]), int(b.ppoint[5])),
  299. cv::Scalar(0, 215, 255), 2);
  300. //line x
  301. int cx = int(b.operate_point[0]);
  302. int cy = int(b.operate_point[1]);
  303. int radius = 20;
  304. cv::line(img_rst, cv::Point(cx - radius, cy - radius), cv::Point(cx + radius, cy + radius), cv::Scalar(0, 215, 255),2);
  305. cv::line(img_rst, cv::Point(cx - radius, cy + radius), cv::Point(cx + radius, cy - radius), cv::Scalar(0, 215, 255),2);
  306. }
  307. }
  308. if (m_cp.image_show) {
  309. imshow_wait("result_img", img_rst);
  310. }
  311. m_pImginfoRaw = mat2imginfo(m_raw_img);
  312. m_pImginfoDetected = mat2imginfo(img_rst);
  313. posinfo.pp_images[0] = m_pImginfoRaw;
  314. posinfo.pp_images[1] = m_pImginfoDetected;
  315. if (m_ppImgSaver && *m_ppImgSaver) {
  316. (*m_ppImgSaver)->saveImage(img_rst, m_imgId + "_rst_0");
  317. }
  318. }
  319. //结果为1无: 算法结果(相机范围内有苗,但是算法没能识别到可以抓取的苗,告诉嵌入式需要抖动)
  320. if (valid_cnt == 0) { return 1; }
  321. return 0;
  322. }
  323. int CTeaSort::detect_impl(
  324. cv::Mat& raw_img, //input, image
  325. vector<Rect>&drop_regions, //input, detect regions
  326. vector<Bbox> &droplets_raw //output, detect result
  327. )
  328. {
  329. //return number of detect result
  330. droplets_raw.clear();
  331. for (auto rect : drop_regions) {
  332. Mat roi = raw_img(rect);
  333. vector<Bbox> head_droplets = m_drop_detector.RunModel(roi, m_pLogger);
  334. if (m_pLogger) {
  335. stringstream buff_;
  336. buff_ << m_imgId << m_dtype_str << "-------crop_rect[" << rect.x << "," << rect.y << "," << rect.width
  337. << "," << rect.height << "],"
  338. << " roi image detect over. tea number is " << head_droplets.size();
  339. m_pLogger->INFO(buff_.str());
  340. }
  341. for (Bbox& b : head_droplets) {
  342. b.x1 += rect.x;
  343. b.x2 += rect.x;
  344. b.y1 += rect.y;
  345. b.y2 += rect.y;
  346. for (int i = 0; i < 5; ++i) {
  347. b.ppoint[2 * i] += rect.x;
  348. b.ppoint[2 * i + 1] += rect.y;
  349. }
  350. }
  351. if (head_droplets.size()) {
  352. droplets_raw.insert(
  353. droplets_raw.end(),
  354. head_droplets.begin(),
  355. head_droplets.end());
  356. }
  357. }
  358. return droplets_raw.size();
  359. }
  360. double CTeaSort::calculate_angle(
  361. Bbox&b, //input
  362. //bool need_precise_angle,//input
  363. double& grab_x, //output
  364. double& grab_y //output
  365. )
  366. {
  367. grab_x = grab_y = 0.0;
  368. double angle = 0.0;
  369. float x2, y2, x3,y3,x4,y4,x5,y5;
  370. x2 = b.ppoint[2];
  371. y2 = b.ppoint[3];
  372. x3 = b.ppoint[4];
  373. y3 = b.ppoint[5];
  374. x4 = b.ppoint[6];
  375. y4 = b.ppoint[7];
  376. x5 = b.ppoint[8];
  377. y5 = b.ppoint[9];
  378. if (m_dtype == img_type::tea_grab) {
  379. angle = atan2(x5 - x3, y5 - y3);
  380. calculate_stem_grab_position_opt(b, grab_x, grab_y, angle);
  381. //计算抓取点
  382. if (grab_x < 0 && grab_y < 0) {
  383. double pr = (double)m_cp.offset_grab;
  384. double dx = pr * sin(angle);
  385. double dy = pr * cos(angle);
  386. grab_x = x5 + dx;
  387. grab_y = y5 + dy;
  388. }
  389. }
  390. else {
  391. //tea cut, calculate line of p3 ans p4
  392. angle = atan2(x2 - x3, y2 - y3);
  393. calculate_stem_cut_position_opt(b, grab_x, grab_y, angle);
  394. }
  395. angle *= (180.0 / 3.1415926);
  396. return angle;
  397. }
  398. int CTeaSort::load_data(
  399. ImgInfo*imginfo,
  400. const char* fn/* = 0*/)
  401. {
  402. //数据加载功能实现,并生成imageid,保存原始数据到文件
  403. int rst = 0;
  404. //generate image id
  405. if (m_dtype == img_type::tea_grab) {
  406. m_imgId = getImgId(img_type::tea_grab);
  407. m_dtype_str = string(" tea_grab ");
  408. }
  409. else {
  410. m_imgId = getImgId(img_type::tea_cut);
  411. m_dtype_str = string(" tea_cut ");
  412. }
  413. if (imginfo) {
  414. if (m_pLogger) {
  415. stringstream buff;
  416. buff << "raw image stream: " << m_imgId << m_dtype_str << "image, width=" << imginfo->width
  417. << "\theight=" << imginfo->height << "\tchannels=" << imginfo->channel;
  418. m_pLogger->INFO(buff.str());
  419. }
  420. if (!isvalid(imginfo) || (imginfo->channel!=1 && imginfo->channel!=3)) {
  421. if (m_pLogger) {
  422. m_pLogger->ERRORINFO(m_imgId + m_dtype_str + "input image invalid.");
  423. }
  424. throw_msg(m_imgId + " invalid input image");
  425. }
  426. if (imginfo->channel == 1) {
  427. cv::Mat tmp_img = imginfo2mat(imginfo);
  428. vector<Mat> channels;
  429. for (size_t i = 0; i < 3; ++i) { channels.push_back(tmp_img); }
  430. cv::merge(channels, m_raw_img);
  431. }
  432. else {
  433. m_raw_img = imginfo2mat(imginfo);
  434. }
  435. if (m_pLogger) {
  436. stringstream buff;
  437. buff << "load image stream: " << m_imgId << m_dtype_str << "image, width=" << m_raw_img.cols
  438. << "\theight=" << m_raw_img.rows << "\tchannels=" << m_raw_img.channels();
  439. m_pLogger->INFO(buff.str());
  440. }
  441. }
  442. else {
  443. cv::Mat img = imread(fn, cv::IMREAD_COLOR);
  444. if (img.empty()) {
  445. if (m_pLogger) {
  446. m_pLogger->ERRORINFO(m_imgId + m_dtype_str + "input image invalid:" + string(fn));
  447. }
  448. throw_msg(m_imgId + m_dtype_str + "invalid input image: " + string(fn));
  449. }
  450. if (m_pLogger) {
  451. stringstream buff;
  452. buff <<"read image file: "<< m_imgId << m_dtype_str << "image, width=" << img.cols
  453. << "\theight=" << img.rows << "\tchannels=" << img.channels();
  454. m_pLogger->INFO(buff.str());
  455. }
  456. m_raw_img = img.clone();
  457. }
  458. if(m_dtype == img_type::tea_grab){
  459. double rot = m_cp.rot_degree_grab;
  460. if(fabs(rot)>1.0e-3){
  461. //rotate image
  462. cv::rotate(m_raw_img, m_raw_img,ROTATE_180);
  463. }
  464. }
  465. if (m_raw_img.channels() == 3 && m_dtype == img_type::tea_cut) {
  466. img_rgb2bgr(m_raw_img);
  467. }
  468. //image saver
  469. if (m_ppImgSaver && *m_ppImgSaver) {
  470. (*m_ppImgSaver)->saveImage(m_raw_img, m_imgId);
  471. if (m_pLogger) {
  472. stringstream buff;
  473. buff <<"saved: "<< m_imgId << m_dtype_str << "image, width=" << m_raw_img.cols
  474. << "\theight=" << m_raw_img.rows<<"\tchannels="<< m_raw_img.channels();
  475. m_pLogger->INFO(buff.str());
  476. }
  477. }
  478. //to gray
  479. if (m_raw_img.channels() == 1) { m_raw_gray_img = m_raw_img; }
  480. else {
  481. cv::cvtColor(m_raw_img, m_raw_gray_img, cv::COLOR_BGR2GRAY);
  482. }
  483. return rst;
  484. }
  485. void CTeaSort::img_rgb2bgr(cv::Mat&img) {
  486. assert(img.channels() == 3);
  487. unsigned char pixel = 0;
  488. for (int r = 0; r < img.rows; ++r) {
  489. unsigned char* pRow = img.ptr(r);
  490. for (int c = 0; c < img.cols; ++c) {
  491. pixel = pRow[c*img.channels()];
  492. pRow[c*img.channels()] = pRow[c*img.channels() + 2];
  493. pRow[c*img.channels() + 2] = pixel;
  494. }
  495. }
  496. }
  497. int CTeaSort::load_model()
  498. {
  499. bool b = false;
  500. if (!m_drop_detector.IsModelLoaded()) {
  501. if (m_dtype == img_type::tea_grab) {
  502. b = m_drop_detector.LoadModel(m_cp.model_path_grab);
  503. }
  504. else {
  505. b = m_drop_detector.LoadModel(m_cp.model_path_cut);
  506. }
  507. }
  508. else {
  509. b = true;
  510. }
  511. return b ? 0 : 1;
  512. }
  513. void CTeaSort::clear_imginfo() {
  514. if (m_pImginfoDetected) {
  515. imginfo_release(&m_pImginfoDetected);
  516. m_pImginfoDetected = 0;
  517. }
  518. if (m_pImginfoRaw) {
  519. imginfo_release(&m_pImginfoRaw);
  520. m_pImginfoRaw = 0;
  521. }
  522. }
  523. int CTeaSort::generate_detect_windows(vector<Rect>&boxes)
  524. {
  525. boxes.clear();
  526. int grid_row = m_cp.grid_row_cut;
  527. int grid_col = m_cp.grid_col_cut;
  528. int grid_padding = m_cp.grid_padding_cut;
  529. if (m_dtype == img_type::tea_grab) {
  530. grid_row = m_cp.grid_row_grab;
  531. grid_col = m_cp.grid_col_grab;
  532. grid_padding = m_cp.grid_padding_grab;
  533. }
  534. if (grid_row < 1) { grid_row = 1; }
  535. if (grid_col < 1) { grid_col = 1; }
  536. if (grid_padding < 0) { grid_padding = 0; }
  537. int block_height = int(m_raw_img.rows / (float)grid_row + 0.5);
  538. int block_width = int(m_raw_img.cols / (float)grid_col + 0.5);
  539. for (int r = 0; r < grid_row; ++r) {
  540. for (int c = 0; c < grid_col; ++c) {
  541. int x0 = c*block_width - grid_padding;
  542. int y0 = r*block_height - grid_padding;
  543. int x1 = (c+1)*block_width + grid_padding;
  544. int y1 = (r+1)*block_height + grid_padding;
  545. if (x0 < 0) { x0 = 0; }
  546. if (y0 < 0) { y0 = 0; }
  547. if (x1 > m_raw_img.cols) { x1 = m_raw_img.cols; }
  548. if (y1 > m_raw_img.rows) { y1 = m_raw_img.rows; }
  549. Rect r(x0, y0, x1-x0, y1-y0);
  550. boxes.push_back(r);
  551. }
  552. }
  553. return boxes.size();
  554. }
  555. //void CTeaSort::calculate_stem_grab_position(
  556. // Bbox&b,
  557. // double& grab_x, //output
  558. // double& grab_y, //output
  559. // double& grab_angle //output
  560. //)
  561. //{
  562. //
  563. // grab_x = grab_y = -1.0;
  564. // //crop image
  565. // int padding = 2 * m_cp.offset_grab;
  566. // int y3 = int(b.ppoint[5]);
  567. // int y5 = int(b.ppoint[9]);
  568. // cv::Point p3(int(b.ppoint[4] - b.x1), int(b.ppoint[5] - b.y1));
  569. // cv::Point p4(int(b.ppoint[6] - b.x1), int(b.ppoint[7] - b.y1));
  570. // cv::Point p5(int(b.ppoint[8] - b.x1), int(b.ppoint[9] - b.y1));
  571. // cv::Mat crop_img;
  572. // if (y5 > y3) {
  573. // // Y position
  574. // int ymax = b.y2 + padding;
  575. // if (ymax > m_raw_img.rows) {
  576. // ymax = m_raw_img.rows;
  577. // }
  578. // crop_img = m_raw_img(cv::Range(b.y1, ymax), cv::Range(b.x1, b.x2)).clone();
  579. // }
  580. // else {
  581. // // ^ position
  582. // if (b.y1 - padding < 0) {
  583. // padding = b.y1;
  584. // }
  585. // p5.y = int(b.ppoint[9] - b.y1 + padding);
  586. // p4.y = int(b.ppoint[7] - b.y1 + padding);
  587. // p3.y = int(b.ppoint[5] - b.y1 + padding);
  588. // crop_img = m_raw_img(cv::Range(b.y1 - padding, b.y2), cv::Range(b.x1, b.x2)).clone();
  589. //
  590. // }
  591. // if (m_cp.image_show) {
  592. // cv::Mat crop_img_tmp = crop_img.clone();
  593. // cv::circle(crop_img_tmp, p3, 4, cv::Scalar(255, 0, 0), -1, 3, 0);
  594. // cv::circle(crop_img_tmp, p4, 4, cv::Scalar(0, 255, 0), -1, 3, 0);
  595. // cv::circle(crop_img_tmp, p5, 4, cv::Scalar(0, 0, 255), -1, 3, 0);
  596. //
  597. // imshow_wait("cropped box", crop_img_tmp);
  598. // }
  599. //
  600. // //to gray
  601. // cv::Mat gray_img;
  602. // if (crop_img.channels() == 1) { gray_img = crop_img; }
  603. // else {
  604. // cv::cvtColor(crop_img, gray_img, cv::COLOR_BGR2GRAY);
  605. // }
  606. // //binary
  607. // cv::Mat bin_img;
  608. // double th = cv::threshold(gray_img, bin_img, 255, 255, cv::THRESH_OTSU);
  609. // cv::bitwise_not(bin_img, bin_img);
  610. // if (m_cp.image_show) {
  611. // imshow_wait("cropped binary img", bin_img);
  612. // }
  613. //
  614. // // skeletonize() or medial_axis()
  615. // cv::Mat ske_img;
  616. // thinning(bin_img, ske_img);
  617. // /*if (m_cp.image_show) {
  618. // imshow_wait("skeleton img", ske_img);
  619. // }*/
  620. //
  621. // //遍历所有点,找到距离等于指定距离的点的位置, 以及距离p5最近的骨架上的点
  622. // std::vector<cv::Point> candidate_pts;
  623. // cv::Point p5_nearst;
  624. // double dist_th = 5;
  625. // double dist_min = 1.0e6;
  626. // for (int r = 0; r < ske_img.rows; ++r) {
  627. // for (int c = 0; c < ske_img.cols; ++c) {
  628. // if (ske_img.at<unsigned char>(r, c) == 0) { continue; }
  629. // double dist = std::powf((p5.x - c), 2) + std::powf((p5.y - r),2);
  630. // dist = std::sqrtf(dist);
  631. // if (dist < dist_min) {
  632. // dist_min = dist;
  633. // p5_nearst.x = c;
  634. // p5_nearst.y = r;
  635. // }
  636. // if (std::fabs(dist - m_cp.offset_grab) < dist_th) {
  637. // candidate_pts.push_back(cv::Point(c, r));
  638. // }
  639. // }
  640. // }
  641. //
  642. // //按与参考角度的差,找到有效的候选点集合
  643. // std::vector<cv::Point> valid_candidate_pts;
  644. // double ref_angle = atan2(p5.x - p3.x, p5.y - p3.y);
  645. // cv::Point p_min_angle(-1,-1);
  646. // double min_angle = CV_PI;
  647. // for (auto&p : candidate_pts) {
  648. // double angle_to_p3 = atan2(p.x - p3.x, p.y - p3.y);
  649. // //计算夹角
  650. // double fabs_angle = intersection_angle(ref_angle, angle_to_p3);
  651. // /*if (ref_angle > 0.5 * CV_PI) {
  652. // if (angle_to_p3 < 0) {
  653. // angle_to_p3 += 2 * CV_PI;
  654. // }
  655. // fabs_angle = std::fabs(angle_to_p3 - ref_angle);
  656. // }
  657. // else {
  658. // if (ref_angle < -0.5 * CV_PI) {
  659. // if (angle_to_p3 > 0) {
  660. // angle_to_p3 -= 2 * CV_PI;
  661. // }
  662. // fabs_angle = std::fabs(angle_to_p3 - ref_angle);
  663. // }
  664. // else {
  665. // fabs_angle = std::fabs(angle_to_p3 - ref_angle);
  666. // }
  667. // }*/
  668. // if (fabs_angle > CV_PI / 4.0) { continue; }
  669. // if (fabs_angle < min_angle) {
  670. // min_angle = fabs_angle;
  671. // p_min_angle.x = p.x;
  672. // p_min_angle.y = p.y;
  673. // }
  674. // valid_candidate_pts.push_back(p);
  675. // }
  676. // if (p_min_angle.x>0 && p_min_angle.y>0) {
  677. // grab_x = p_min_angle.x;
  678. // grab_y = p_min_angle.y;
  679. // }
  680. //
  681. // if (m_cp.image_show) {
  682. // cv::Mat ske_img_tmp = ske_img.clone();
  683. // for (auto&p : valid_candidate_pts) {
  684. // ske_img_tmp.at<unsigned char>(p) = 100;
  685. // }
  686. // cv::circle(ske_img_tmp, p5, 4, cv::Scalar(255, 0, 255), 1, 3, 0);
  687. // if (grab_x > 0 && grab_y > 0) {
  688. // cv::circle(ske_img_tmp, cv::Point(int(grab_x), int(grab_y)), 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  689. // }
  690. // imshow_wait("skeleton img label", ske_img_tmp);
  691. // }
  692. //
  693. // //计算grab点的抓取角度
  694. // if (p_min_angle.x > 0 && p_min_angle.y > 0) {
  695. // grab_angle = get_grab_position(ske_img, p_min_angle, ref_angle);
  696. // }
  697. //
  698. // //重新得到grab_x,grab_y的坐标
  699. // if (grab_x > 0 && grab_y > 0) {
  700. // int real_padding_y = p5.y - int(b.ppoint[9] - b.y1);
  701. // grab_y -= real_padding_y;
  702. // grab_y += b.y1;
  703. // grab_x += b.x1;
  704. // }
  705. //
  706. //}
  707. /**
  708. * Code for thinning a binary image using Zhang-Suen algorithm.
  709. *
  710. * Author: Nash (nash [at] opencv-code [dot] com)
  711. * Website: http://opencv-code.com
  712. */
  713. /**
  714. * Perform one thinning iteration.
  715. * Normally you wouldn't call this function directly from your code.
  716. *
  717. * Parameters:
  718. * im Binary image with range = [0,1]
  719. * iter 0=even, 1=odd
  720. */
  721. void CTeaSort::thinningIteration(cv::Mat& img, int iter)
  722. {
  723. CV_Assert(img.channels() == 1);
  724. CV_Assert(img.depth() != sizeof(uchar));
  725. CV_Assert(img.rows > 3 && img.cols > 3);
  726. cv::Mat marker = cv::Mat::zeros(img.size(), CV_8UC1);
  727. int nRows = img.rows;
  728. int nCols = img.cols;
  729. if (img.isContinuous()) {
  730. nCols *= nRows;
  731. nRows = 1;
  732. }
  733. int x, y;
  734. uchar *pAbove;
  735. uchar *pCurr;
  736. uchar *pBelow;
  737. uchar *nw, *no, *ne; // north (pAbove)
  738. uchar *we, *me, *ea;
  739. uchar *sw, *so, *se; // south (pBelow)
  740. uchar *pDst;
  741. // initialize row pointers
  742. pAbove = NULL;
  743. pCurr = img.ptr<uchar>(0);
  744. pBelow = img.ptr<uchar>(1);
  745. for (y = 1; y < img.rows - 1; ++y) {
  746. // shift the rows up by one
  747. pAbove = pCurr;
  748. pCurr = pBelow;
  749. pBelow = img.ptr<uchar>(y + 1);
  750. pDst = marker.ptr<uchar>(y);
  751. // initialize col pointers
  752. no = &(pAbove[0]);
  753. ne = &(pAbove[1]);
  754. me = &(pCurr[0]);
  755. ea = &(pCurr[1]);
  756. so = &(pBelow[0]);
  757. se = &(pBelow[1]);
  758. for (x = 1; x < img.cols - 1; ++x) {
  759. // shift col pointers left by one (scan left to right)
  760. nw = no;
  761. no = ne;
  762. ne = &(pAbove[x + 1]);
  763. we = me;
  764. me = ea;
  765. ea = &(pCurr[x + 1]);
  766. sw = so;
  767. so = se;
  768. se = &(pBelow[x + 1]);
  769. int A = (*no == 0 && *ne == 1) + (*ne == 0 && *ea == 1) +
  770. (*ea == 0 && *se == 1) + (*se == 0 && *so == 1) +
  771. (*so == 0 && *sw == 1) + (*sw == 0 && *we == 1) +
  772. (*we == 0 && *nw == 1) + (*nw == 0 && *no == 1);
  773. int B = *no + *ne + *ea + *se + *so + *sw + *we + *nw;
  774. int m1 = iter == 0 ? (*no * *ea * *so) : (*no * *ea * *we);
  775. int m2 = iter == 0 ? (*ea * *so * *we) : (*no * *so * *we);
  776. if (A == 1 && (B >= 2 && B <= 6) && m1 == 0 && m2 == 0)
  777. pDst[x] = 1;
  778. }
  779. }
  780. img &= ~marker;
  781. }
  782. /**
  783. * Function for thinning the given binary image
  784. *
  785. * Parameters:
  786. * src The source image, binary with range = [0,255]
  787. * dst The destination image
  788. */
  789. void CTeaSort::thinning(const cv::Mat& src, cv::Mat& dst)
  790. {
  791. dst = src.clone();
  792. dst /= 255; // convert to binary image
  793. cv::Mat prev = cv::Mat::zeros(dst.size(), CV_8UC1);
  794. cv::Mat diff;
  795. do {
  796. thinningIteration(dst, 0);
  797. thinningIteration(dst, 1);
  798. cv::absdiff(dst, prev, diff);
  799. dst.copyTo(prev);
  800. } while (cv::countNonZero(diff) > 0);
  801. dst *= 255;
  802. }
  803. /**
  804. distance_thinning()
  805. distance transform based thinning
  806. -----disused
  807. */
  808. //void CTeaSort::distance_thinning(const cv::Mat& src, cv::Mat& dst)
  809. //{
  810. //
  811. // cv::Mat dist_mat(src.size(), CV_32FC1);
  812. // cv::distanceTransform(src, dist_mat, DIST_L2, 3);
  813. //
  814. // float max_dist = *max_element(dist_mat.begin<float>(), dist_mat.end<float>());
  815. // double r = 1.0;
  816. // if (max_dist > 1.0e-3) {
  817. // r = 255.0 / max_dist;
  818. // }
  819. // cv::Mat dist_img;
  820. // dist_mat.convertTo(dist_img, CV_8UC1, r, 0.0);
  821. //
  822. // cv::Canny(dist_img, dst, 50, 100, 7);
  823. //
  824. // unsigned char udist = *max_element(dst.begin<unsigned char>(), dst.end<unsigned char>());
  825. // if (m_cp.image_show) {
  826. // imshow_wait("dist_img", dist_img);
  827. // imshow_wait("canny", dst);
  828. // }
  829. //
  830. //
  831. //}
  832. /**
  833. part_thinning()
  834. 将图片缩小,thinning, 然后放大得到,用以提高效率
  835. */
  836. void CTeaSort::part_thinning(const cv::Mat& src, cv::Mat& dst)
  837. {
  838. cv::Mat part_img;
  839. cv::resize(src, part_img, cv::Size(src.cols / 2, src.rows / 2));
  840. cv::Mat part_ske_img;
  841. thinning(part_img, part_ske_img);
  842. cv::Mat gray_img;
  843. cv::resize(part_ske_img, gray_img, src.size());
  844. double th = cv::threshold(gray_img, dst, 255, 255, cv::THRESH_OTSU);
  845. /*if (m_cp.image_show) {
  846. imshow_wait("part_img", part_img);
  847. imshow_wait("part_ske_img", part_ske_img);
  848. imshow_wait("dst", dst);
  849. }*/
  850. }
  851. /**
  852. 计算 [-pi,pi]间的两个角间的夹角
  853. */
  854. double CTeaSort::intersection_angle(
  855. double ref_angle,
  856. double angle_to_p3
  857. )
  858. {
  859. //计算夹角
  860. double fabs_angle = 0;
  861. if (ref_angle > 0.5 * CV_PI) {
  862. if (angle_to_p3 < 0) {
  863. angle_to_p3 += 2 * CV_PI;
  864. }
  865. fabs_angle = std::fabs(angle_to_p3 - ref_angle);
  866. }
  867. else {
  868. if (ref_angle < -0.5 * CV_PI) {
  869. if (angle_to_p3 > 0) {
  870. angle_to_p3 -= 2 * CV_PI;
  871. }
  872. fabs_angle = std::fabs(angle_to_p3 - ref_angle);
  873. }
  874. else {
  875. fabs_angle = std::fabs(angle_to_p3 - ref_angle);
  876. }
  877. }
  878. return fabs_angle;
  879. }
  880. /**
  881. *
  882. */
  883. double CTeaSort::get_grab_position(
  884. const std::vector<cv::Point2f>& inner_pixels,
  885. const cv::Mat& skele_img,
  886. cv::Point&vertex,
  887. double ref_angle
  888. )
  889. {
  890. double grab_point_angle = CV_2PI;
  891. cv::Point pt0, pt1, pt2, pt3;
  892. double radius = static_cast<double>(m_cp.offset_grab) * 0.5;
  893. calc_bottom_vertex(vertex, ref_angle, CV_PI / 8.0, radius, pt0, pt1);
  894. calc_bottom_vertex(vertex, ref_angle+CV_PI, CV_PI / 8.0, radius, pt2, pt3);
  895. std::vector<cv::Point> triangle_region;
  896. triangle_region.push_back(pt0);
  897. triangle_region.push_back(pt1);
  898. triangle_region.push_back(pt2);
  899. triangle_region.push_back(pt3);
  900. //构建多边形,然后判别骨架图中在多边形内的骨架像素
  901. std::vector<cv::Point2f> curve_pts;
  902. for (auto&pt : inner_pixels) {
  903. double d = cv::pointPolygonTest(triangle_region, pt, false);
  904. // d 1-内部点, 0-边缘点 -1-外部点
  905. if (d > 0) {
  906. curve_pts.push_back(pt);
  907. }
  908. }
  909. //根据curve_pts进行曲线拟合,得到茎的曲线
  910. cv::Vec4f line_model;//[vx,vy, x0,y0], vx,vy---方向的归一化向量,x0,y0---直线上任意一点
  911. line_fit(curve_pts, line_model);
  912. double y_angle = atan2(line_model[0], line_model[1]);// y_angle in range [-pi, pi]
  913. double fabs_angle = intersection_angle(ref_angle, y_angle);
  914. double y_angle_inv = atan2(-line_model[0], -line_model[1]);; //y_angle_inv in range [-pi, pi]
  915. double fabs_angle_inv = intersection_angle(ref_angle, y_angle_inv);
  916. grab_point_angle = y_angle;
  917. if (fabs_angle_inv < fabs_angle) {
  918. grab_point_angle = y_angle_inv;
  919. }
  920. //可视化
  921. if (m_cp.image_show) {
  922. cv::Mat ske_img_tmp = skele_img.clone();
  923. for (auto&p : curve_pts) {
  924. ske_img_tmp.at<unsigned char>(p) = 100;
  925. }
  926. cv::circle(ske_img_tmp, vertex, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  927. cv::circle(ske_img_tmp, pt0, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  928. cv::circle(ske_img_tmp, pt1, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  929. cv::circle(ske_img_tmp, pt2, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  930. cv::circle(ske_img_tmp, pt3, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  931. cv::line(ske_img_tmp, pt0, pt1, cv::Scalar(255, 215, 255), 2);
  932. cv::line(ske_img_tmp, pt0, pt3, cv::Scalar(255, 215, 255), 2);
  933. cv::line(ske_img_tmp, pt1, pt2, cv::Scalar(255, 215, 255), 2);
  934. cv::line(ske_img_tmp, pt2, pt3, cv::Scalar(255, 215, 255), 2);
  935. double dcx = radius * sin(grab_point_angle);
  936. double dcy = radius * cos(grab_point_angle);
  937. cv::Point dir_o;
  938. cv::Point dir_p;
  939. dir_o.x = vertex.x + 10;
  940. dir_o.y = vertex.y;
  941. dir_p.x = int(vertex.x + 10 + dcx);
  942. dir_p.y = int(vertex.y + dcy);
  943. cv::line(ske_img_tmp, dir_o, dir_p, cv::Scalar(255, 215, 255), 2);
  944. imshow_wait("grab angle", ske_img_tmp);
  945. }
  946. return grab_point_angle;
  947. }
  948. /**
  949. * calc_bottom_vertex
  950. * 找到等腰三角形两个底角点
  951. *
  952. *
  953. */
  954. void CTeaSort::calc_bottom_vertex(
  955. cv::Point&vertex, //input
  956. double ref_angle, //input, rad, 等腰三角形高的方向
  957. double delta_angle, //input, rad, 等腰三角形1/2分角
  958. double radius, //input, 等腰三角形腰长
  959. cv::Point&bpt0, //output
  960. cv::Point&bpt1 //output
  961. )
  962. {
  963. //double delta_angle = CV_PI / 8.0; // 22.5 degree
  964. //double radius = static_cast<double>(m_cp.offset_grab) * 1.5;
  965. double angle = ref_angle - delta_angle;
  966. int x = static_cast<int>(radius * sin(angle) + 0.5) + vertex.x;
  967. int y = static_cast<int>(radius * cos(angle) + 0.5) + vertex.y;
  968. bpt0.x = x;
  969. bpt0.y = y;
  970. angle = ref_angle + delta_angle;
  971. x = static_cast<int>(radius * sin(angle) + 0.5) + vertex.x;
  972. y = static_cast<int>(radius * cos(angle) + 0.5) + vertex.y;
  973. bpt1.x = x;
  974. bpt1.y = y;
  975. }
  976. //cv::Mat CTeaSort::poly_fit(
  977. // std::vector<cv::Point2f>& chain,
  978. // int n
  979. //)
  980. //{
  981. // //https://blog.csdn.net/jpc20144055069/article/details/103232641
  982. // cv::Mat y(chain.size(), 1, CV_32F, cv::Scalar::all(0));
  983. // cv::Mat phy(chain.size(), n, CV_32F, cv::Scalar::all(0));
  984. // for(int i=0;i<phy.rows;++i){
  985. // float* pr = phy.ptr<float>(i);
  986. // for(int j=0; j<phy.cols;++j){
  987. // pr[j] = pow(chain[i].x,j);
  988. // }
  989. // y.at<float>(i) = chain[i].y;
  990. // }
  991. //
  992. // cv::Mat phy_t = phy.t();
  993. // cv::Mat phyMULphy_t = phy.t() * phy;
  994. // cv::Mat phyMphyInv = phyMULphy_t.inv();
  995. // cv::Mat a = phyMphyInv * phy_t;
  996. // a = a*y;
  997. // return a;
  998. //}
  999. void CTeaSort::line_fit(std::vector<cv::Point2f>& key_point, cv::Vec4f& lines)
  1000. {
  1001. /*std::vector<cv::Point2f> pts;
  1002. for (auto&p : key_point) {
  1003. pts.push_back(cv::Point2f(p.x, p.y));
  1004. }*/
  1005. double param = 0;
  1006. double reps = 0.01;
  1007. double aeps = 0.01;
  1008. //cv::Vec4f lines;//[vx,vy, x0,y0], vx,vy---方向的归一化向量,x0,y0---直线上任意一点
  1009. cv::fitLine(key_point, lines, DIST_L1, param, reps, aeps);
  1010. }
  1011. //bool CTeaSort::poly_fit_cv(
  1012. //std::vector<cv::Point>& key_point,
  1013. //int n,
  1014. //cv::Mat& A
  1015. //)
  1016. //{
  1017. // //https://blog.csdn.net/KYJL888/article/details/103073956
  1018. // int N = key_point.size();
  1019. //
  1020. // //构造矩阵X
  1021. // cv::Mat X = cv::Mat::zeros(n+1, n+1, CV_64FC1);
  1022. // for(int i=0;i<n+1; ++i){
  1023. // for(int j=0;j<n+1;++j){
  1024. // for(int k=0;k<N;++k){
  1025. // X.at<double>(i,j) = X.at<double>(i,j) +
  1026. // std::pow(key_point[k].x, i+j);
  1027. // }
  1028. // }
  1029. // }
  1030. //
  1031. // //构造矩阵Y
  1032. // cv::Mat Y = cv::Mat::zeros(n+1, 1, CV_64FC1);
  1033. // for(int i=0;i<n+1;++i){
  1034. // for(int k=0;k<N;++k){
  1035. // Y.at<double>(i,0) = Y.at<double>(i,0) +
  1036. // std::pow(key_point[k].x, i) + key_point[k].y;
  1037. // }
  1038. // }
  1039. //
  1040. // A = cv::Mat::zeros(n+1, 1, CV_64FC1);
  1041. // cv::solve(X,Y,A,cv::DECOMP_LU);
  1042. // return true;
  1043. //}
  1044. //double CTeaSort::calc_fit_y(
  1045. //double x, //input
  1046. //cv::Mat& A //input
  1047. //)
  1048. //{
  1049. // //double y = A.at<double>(0,0) + A.at<double>(1,0) * x +
  1050. // // A.at<double>(2,0) * std::pow(x,2) + A.at<double>(3,0) * std::pow(x,3);
  1051. // //return y;
  1052. //
  1053. // double y = 0.0;
  1054. // for(int i=0; i<A.rows;++i){
  1055. // y += A.at<double>(i,0) * std::pow(x,i);
  1056. // }
  1057. // return y;
  1058. //}
  1059. //}
  1060. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  1061. // calculate_stem_grab_position_opt()替代calculate_stem_grab_position函数
  1062. // 1)采用局部thinning方法提高效率
  1063. // 2) 重新用局部线性拟合的方向替代ref_angle(原始是p5和p3点连线与y正方向的夹角)
  1064. void CTeaSort::calculate_stem_grab_position_opt(
  1065. Bbox&b_original,
  1066. double& grab_x, //output
  1067. double& grab_y, //output
  1068. double& grab_angle //input-output
  1069. )
  1070. {
  1071. //扩展box的范围,4个方向全部扩展
  1072. Bbox b(b_original);
  1073. int padding_border = m_cp.offset_grab;
  1074. b.x1 -= padding_border;
  1075. b.x1 = b.x1 < 0 ? 0 : b.x1;
  1076. b.y1 -= padding_border;
  1077. b.y1 = b.y1 < 0 ? 0 : b.y1;
  1078. b.x2 += padding_border;
  1079. b.x2 = b.x2 < m_raw_img.cols ? b.x2 : m_raw_img.cols - 1;
  1080. b.y2 += padding_border;
  1081. b.y2 = b.y2 < m_raw_img.rows ? b.y2 : m_raw_img.rows - 1;
  1082. grab_x = grab_y = -1.0;
  1083. //crop image
  1084. int padding = 0;
  1085. int y3 = int(b.ppoint[5]);
  1086. int y5 = int(b.ppoint[9]);
  1087. cv::Point p3(int(b.ppoint[4] - b.x1), int(b.ppoint[5] - b.y1));
  1088. cv::Point p4(int(b.ppoint[6] - b.x1), int(b.ppoint[7] - b.y1));
  1089. cv::Point p5(int(b.ppoint[8] - b.x1), int(b.ppoint[9] - b.y1));
  1090. cv::Mat crop_img;
  1091. if (y5 > y3) {
  1092. // Y position
  1093. int ymax = b.y2 + padding;
  1094. if (ymax > m_raw_img.rows) {
  1095. ymax = m_raw_img.rows;
  1096. }
  1097. crop_img = m_raw_img(cv::Range(b.y1, ymax), cv::Range(b.x1, b.x2)).clone();
  1098. }
  1099. else {
  1100. // ^ position
  1101. if (b.y1 - padding < 0) {
  1102. padding = b.y1;
  1103. }
  1104. p5.y = int(b.ppoint[9] - b.y1 + padding);
  1105. p4.y = int(b.ppoint[7] - b.y1 + padding);
  1106. p3.y = int(b.ppoint[5] - b.y1 + padding);
  1107. crop_img = m_raw_img(cv::Range(b.y1 - padding, b.y2), cv::Range(b.x1, b.x2)).clone();
  1108. }
  1109. if (m_cp.image_show) {
  1110. cv::Mat crop_img_tmp = crop_img.clone();
  1111. cv::circle(crop_img_tmp, p3, 4, cv::Scalar(255, 0, 0), -1, 3, 0);
  1112. cv::circle(crop_img_tmp, p4, 4, cv::Scalar(0, 255, 0), -1, 3, 0);
  1113. cv::circle(crop_img_tmp, p5, 4, cv::Scalar(0, 0, 255), -1, 3, 0);
  1114. imshow_wait("cropped box", crop_img_tmp);
  1115. }
  1116. //to gray
  1117. cv::Mat gray_img;
  1118. if (crop_img.channels() == 1) { gray_img = crop_img; }
  1119. else {
  1120. cv::cvtColor(crop_img, gray_img, cv::COLOR_BGR2GRAY);
  1121. }
  1122. //binary
  1123. cv::Mat bin_img;
  1124. double th = cv::threshold(gray_img, bin_img, 255, 255, cv::THRESH_OTSU);
  1125. cv::bitwise_not(bin_img, bin_img);
  1126. if (m_cp.image_show) {
  1127. imshow_wait("cropped binary img", bin_img);
  1128. }
  1129. // skeletonize() or medial_axis()
  1130. cv::Mat ske_img;
  1131. //thinning(bin_img, ske_img);
  1132. part_thinning(bin_img, ske_img);
  1133. /*if (m_cp.image_show) {
  1134. imshow_wait("skeleton img", ske_img);
  1135. }*/
  1136. //获取ske_img中骨架上的点坐标
  1137. std::vector<cv::Point2f> ske_pixels;
  1138. for (int r = 1; r < ske_img.rows-1; ++r) {
  1139. for (int c = 1; c < ske_img.cols-1; ++c) {
  1140. if (ske_img.at<unsigned char>(r, c) == 0) { continue; }
  1141. ske_pixels.push_back(cv::Point2f(c, r));
  1142. }
  1143. }
  1144. //在grab_angle的指导下找到最优方向,截图,进行局部thinning
  1145. double ref_angle_init = grab_angle;
  1146. double delta_angle = CV_PI / 24.0;
  1147. double radius = static_cast<double>(m_cp.offset_grab);
  1148. cv::Point pt0, pt1, pt2, pt3;
  1149. double step_angle = CV_PI / 36.0; // 5 degree
  1150. int max_pixels = 0;
  1151. cv::Point pt0_opt, pt1_opt, pt2_opt, pt3_opt, center_opt;
  1152. //int minx_opt, maxx_opt, miny_opt, maxy_opt;
  1153. std::vector<cv::Point2f> ske_pixels_opt;
  1154. double target_angle_opt;
  1155. for (int i = -10; i <= 10; ++i) { //-30 degree ---- 30 degree
  1156. //在指定方向的矩形框内,找到内部点最多的方向,作为主方向
  1157. double target_angle = ref_angle_init + i*step_angle;
  1158. cv::Point center_pt;
  1159. center_pt.x = p4.x + static_cast<int>(radius * sin(target_angle));
  1160. center_pt.y = p4.y + static_cast<int>(radius * cos(target_angle));
  1161. calc_bottom_vertex(center_pt, target_angle, delta_angle, radius, pt0, pt1);
  1162. calc_bottom_vertex(center_pt, target_angle + CV_PI, delta_angle, radius, pt2, pt3);
  1163. std::vector<cv::Point> triangle_region;
  1164. triangle_region.push_back(pt0);
  1165. triangle_region.push_back(pt1);
  1166. triangle_region.push_back(pt2);
  1167. triangle_region.push_back(pt3);
  1168. //counting
  1169. int pixel_num = 0;
  1170. std::vector<cv::Point2f> inner_pixels;
  1171. for (auto&pt : ske_pixels) {
  1172. double d = cv::pointPolygonTest(triangle_region, pt, false);
  1173. // d 1-内部点, 0-边缘点 -1-外部点
  1174. if (d >= 0) {
  1175. pixel_num++;
  1176. inner_pixels.push_back(pt);
  1177. }
  1178. }
  1179. if (pixel_num > max_pixels) {
  1180. max_pixels = pixel_num;
  1181. pt0_opt = pt0;
  1182. pt1_opt = pt1;
  1183. pt2_opt = pt2;
  1184. pt3_opt = pt3;
  1185. center_opt = center_pt;
  1186. ske_pixels_opt.clear();
  1187. ske_pixels_opt.insert(ske_pixels_opt.begin(), inner_pixels.begin(), inner_pixels.end());
  1188. target_angle_opt = target_angle;
  1189. }
  1190. /*if (m_cp.image_show) {
  1191. cv::Mat bin_tmp = bin_img.clone();
  1192. cv::circle(bin_tmp, p5, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1193. cv::circle(bin_tmp, pt0, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1194. cv::circle(bin_tmp, pt1, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1195. cv::circle(bin_tmp, pt2, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1196. cv::circle(bin_tmp, pt3, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1197. cv::line(bin_tmp, pt0, pt1, cv::Scalar(180, 215, 255), 2);
  1198. cv::line(bin_tmp, pt0, pt3, cv::Scalar(180, 215, 255), 2);
  1199. cv::line(bin_tmp, pt1, pt2, cv::Scalar(180, 215, 255), 2);
  1200. cv::line(bin_tmp, pt2, pt3, cv::Scalar(180, 215, 255), 2);
  1201. imshow_wait("binary img box", bin_tmp);
  1202. }*/
  1203. }
  1204. //opt box process
  1205. if (m_cp.image_show) {
  1206. cv::Mat bin_tmp = ske_img.clone();
  1207. cv::circle(bin_tmp, p4, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1208. cv::circle(bin_tmp, pt0_opt, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1209. cv::circle(bin_tmp, pt1_opt, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1210. cv::circle(bin_tmp, pt2_opt, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1211. cv::circle(bin_tmp, pt3_opt, 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1212. cv::line(bin_tmp, pt0_opt, pt1_opt, cv::Scalar(180, 215, 255), 2);
  1213. cv::line(bin_tmp, pt0_opt, pt3_opt, cv::Scalar(180, 215, 255), 2);
  1214. cv::line(bin_tmp, pt1_opt, pt2_opt, cv::Scalar(180, 215, 255), 2);
  1215. cv::line(bin_tmp, pt2_opt, pt3_opt, cv::Scalar(180, 215, 255), 2);
  1216. imshow_wait("binary img box opt", bin_tmp);
  1217. }
  1218. //计算ref_angle
  1219. cv::Vec4f line_model;//[vx,vy, x0,y0], vx,vy---方向的归一化向量,x0,y0---直线上任意一点
  1220. line_fit(ske_pixels_opt, line_model);
  1221. double y_angle = atan2(line_model[0], line_model[1]);// y_angle in range [-pi, pi]
  1222. double fabs_angle = intersection_angle(target_angle_opt, y_angle);
  1223. double y_angle_inv = atan2(-line_model[0], -line_model[1]);; //y_angle_inv in range [-pi, pi]
  1224. double fabs_angle_inv = intersection_angle(target_angle_opt, y_angle_inv);
  1225. double ref_angle = y_angle;
  1226. if (fabs_angle_inv < fabs_angle) {
  1227. ref_angle = y_angle_inv;
  1228. }
  1229. //可视化
  1230. /*if (m_cp.image_show) {
  1231. cv::Mat ske_img_tmp = ske_img.clone();
  1232. for (auto&p : in_region_pts) {
  1233. ske_img_tmp.at<unsigned char>(p) = 100;
  1234. }
  1235. double dcx = radius * sin(ref_angle);
  1236. double dcy = radius * cos(ref_angle);
  1237. cv::Point dir_o;
  1238. cv::Point dir_p;
  1239. dir_o.x = center_opt.x + 10;
  1240. dir_o.y = center_opt.y;
  1241. dir_p.x = int(center_opt.x + 10 + dcx);
  1242. dir_p.y = int(center_opt.y + dcy);
  1243. cv::line(ske_img_tmp, dir_o, dir_p, cv::Scalar(255, 215, 255), 2);
  1244. imshow_wait("ref angle", ske_img_tmp);
  1245. }*/
  1246. //遍历所有点,找到距离等于指定距离的点的位置, 以及距离p4最近的骨架上的点
  1247. std::vector<cv::Point> candidate_pts;
  1248. cv::Point p4_nearst;
  1249. double dist_th = 5;
  1250. double dist_min = 1.0e6;
  1251. for (auto& pt : ske_pixels_opt) {
  1252. int c = int(pt.x);
  1253. int r = int(pt.y);
  1254. double dist = std::powf((p4.x - c), 2) + std::powf((p4.y - r), 2);
  1255. dist = std::sqrtf(dist);
  1256. if (dist < dist_min) {
  1257. dist_min = dist;
  1258. p4_nearst.x = c;
  1259. p4_nearst.y = r;
  1260. }
  1261. if (std::fabs(dist - m_cp.offset_grab) < dist_th) {
  1262. candidate_pts.push_back(cv::Point(c, r));
  1263. }
  1264. }
  1265. //按与参考角度的差,找到有效的候选点集合
  1266. std::vector<cv::Point> valid_candidate_pts;
  1267. cv::Point p_min_angle(-1, -1);
  1268. double min_angle = CV_PI;
  1269. for (auto&p : candidate_pts) {
  1270. double angle_to_p3 = atan2(p.x - p3.x, p.y - p3.y);
  1271. //计算夹角
  1272. double fabs_angle = intersection_angle(ref_angle, angle_to_p3);
  1273. if (fabs_angle > CV_PI / 4.0) { continue; }
  1274. if (fabs_angle < min_angle) {
  1275. min_angle = fabs_angle;
  1276. p_min_angle.x = p.x;
  1277. p_min_angle.y = p.y;
  1278. }
  1279. valid_candidate_pts.push_back(p);
  1280. }
  1281. if (p_min_angle.x>0 && p_min_angle.y>0) {
  1282. grab_x = p_min_angle.x;
  1283. grab_y = p_min_angle.y;
  1284. }
  1285. if (m_cp.image_show) {
  1286. cv::Mat ske_img_tmp = ske_img.clone();
  1287. for (auto&p : valid_candidate_pts) {
  1288. ske_img_tmp.at<unsigned char>(p) = 100;
  1289. }
  1290. cv::circle(ske_img_tmp, p4, 4, cv::Scalar(255, 0, 255), 1, 3, 0);
  1291. if (grab_x > 0 && grab_y > 0) {
  1292. cv::circle(ske_img_tmp, cv::Point(int(grab_x), int(grab_y)), 4, cv::Scalar(156, 0, 255), 1, 3, 0);
  1293. }
  1294. imshow_wait("skeleton img label", ske_img_tmp);
  1295. }
  1296. //计算grab点的抓取角度
  1297. if (p_min_angle.x > 0 && p_min_angle.y > 0) {
  1298. grab_angle = get_grab_position(ske_pixels_opt, ske_img, p_min_angle, ref_angle);
  1299. }
  1300. //重新得到grab_x,grab_y的坐标
  1301. if (grab_x > 0 && grab_y > 0) {
  1302. int real_padding_y = p4.y - int(b.ppoint[7] - b.y1);
  1303. grab_y -= real_padding_y;
  1304. grab_y += b.y1;
  1305. grab_x += b.x1;
  1306. }
  1307. }
  1308. void CTeaSort::calculate_stem_cut_position_opt(
  1309. Bbox&b,
  1310. double& grab_x, //output
  1311. double& grab_y, //output
  1312. double& grab_angle //input-output
  1313. )
  1314. {
  1315. int padding = 40;
  1316. grab_x = grab_y = -1.0;
  1317. //crop image
  1318. cv::Point p3o(int(b.ppoint[4]), int(b.ppoint[5]));
  1319. cv::Point p2o(int(b.ppoint[2]), int(b.ppoint[3]));
  1320. int x1, y1, x2, y2;
  1321. x1 = min(p3o.x, p2o.x);
  1322. y1 = min(p3o.y, p2o.y);
  1323. x2 = max(p3o.x, p2o.x);
  1324. y2 = max(p3o.y, p2o.y);
  1325. x1 -= padding;
  1326. x1 = x1 < 0 ? 0 : x1;
  1327. y1 -= padding;
  1328. y1 = y1 < 0 ? 0 : y1;
  1329. x2 += padding;
  1330. x2 = x2 < m_raw_img.cols ?x2 : m_raw_img.cols - 1;
  1331. y2 += padding;
  1332. y2 = y2 < m_raw_img.rows ? y2 : m_raw_img.rows - 1;
  1333. cv::Point p3(int(b.ppoint[4] - x1), int(b.ppoint[5] - y1));
  1334. cv::Point p2(int(b.ppoint[2] - x1), int(b.ppoint[3] - y1));
  1335. cv::Mat crop_img;
  1336. crop_img = m_raw_img(cv::Range(y1, y2), cv::Range(x1, x2)).clone();
  1337. if (m_cp.image_show) {
  1338. cv::Mat crop_img_tmp = crop_img.clone();
  1339. cv::circle(crop_img_tmp, p2, 4, cv::Scalar(255, 0, 0), -1, 3, 0);
  1340. cv::circle(crop_img_tmp, p3, 4, cv::Scalar(0, 255, 0), -1, 3, 0);
  1341. imshow_wait("cropped box", crop_img_tmp);
  1342. }
  1343. //to gray
  1344. cv::Mat gray_img;
  1345. if (crop_img.channels() == 1) { gray_img = crop_img; }
  1346. else {
  1347. cv::cvtColor(crop_img, gray_img, cv::COLOR_BGR2GRAY);
  1348. }
  1349. //binary
  1350. cv::Mat bin_img;
  1351. double th = cv::threshold(gray_img, bin_img, 255, 255, cv::THRESH_OTSU);
  1352. cv::bitwise_not(bin_img, bin_img);
  1353. if (m_cp.image_show) {
  1354. imshow_wait("cropped binary img", bin_img);
  1355. }
  1356. // skeletonize() or medial_axis()
  1357. cv::Mat ske_img;
  1358. thinning(bin_img, ske_img);
  1359. if (m_cp.image_show) {
  1360. imshow_wait("skeleton img", ske_img);
  1361. }
  1362. cv::Point2f center_pt;
  1363. double p3_ratio = m_cp.kp3_weight_cut;
  1364. if(p3_ratio > 1.0) { p3_ratio = 1.0; }
  1365. if(p3_ratio < 0.0) { p3_ratio = 0.0; }
  1366. center_pt.x = p3_ratio*p3.x + (1.0 - p3_ratio)*p2.x;
  1367. center_pt.y = p3_ratio*p3.y + (1.0 - p3_ratio)*p2.y;
  1368. //检查center_pt附近,是否有目标,如果有就用center_pt点作为切割点
  1369. int nnr = 3;
  1370. int cx, cy, knn, x, y;
  1371. cx = int(center_pt.x);
  1372. cy = int(center_pt.y);
  1373. knn = 0;
  1374. for (int r = -nnr; r <= nnr; ++r) {
  1375. y = r + cy;
  1376. if (y < 0 || y >= bin_img.rows) { continue; }
  1377. for (int c = -nnr; c <= nnr; ++c) {
  1378. x = cx + c;
  1379. if (x < 0 || x >= bin_img.cols) { continue; }
  1380. if (bin_img.at<unsigned char>(y, x) > 0) { knn++; }
  1381. }
  1382. }
  1383. if (knn > 0) {
  1384. grab_x = cx;
  1385. grab_y = cy;
  1386. grab_x += x1;
  1387. grab_y += y1;
  1388. return;
  1389. }
  1390. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  1391. // 否则通过骨架化图,找到旁边的点(适用于茎弯曲的情况)
  1392. int min_x, min_y;
  1393. min_x = cx;
  1394. min_y = cy;
  1395. double min_loss = 1.0e6;
  1396. double ref_angle = grab_angle + CV_PI / 2.0;
  1397. if (ref_angle > CV_PI) {
  1398. ref_angle = ref_angle - 2 * CV_PI;
  1399. }
  1400. for (int r = 0; r < ske_img.rows; ++r) {
  1401. for (int c = 0; c < ske_img.cols; ++c) {
  1402. if (ske_img.at<unsigned char>(r, c) == 0) { continue; }
  1403. double target_angle = atan2(double(c- center_pt.x), double(r - center_pt.y));
  1404. double dangle = intersection_angle(ref_angle, target_angle);
  1405. if (dangle > CV_PI / 36.0) { continue; }
  1406. double dist = std::powf((center_pt.x - c), 2) + std::powf((center_pt.y - r), 2);
  1407. dist = std::sqrtf(dist);
  1408. double loss = dist;
  1409. // d 1-内部点, 0-边缘点 -1-外部点
  1410. if (loss < min_loss) {
  1411. min_loss = loss;
  1412. min_x = c;
  1413. min_y = r;
  1414. }
  1415. }
  1416. }
  1417. //另一个方向
  1418. ref_angle = grab_angle - CV_PI / 2.0;
  1419. if (ref_angle < -CV_PI) {
  1420. ref_angle = ref_angle + 2 * CV_PI;
  1421. }
  1422. for (int r = 0; r < ske_img.rows; ++r) {
  1423. for (int c = 0; c < ske_img.cols; ++c) {
  1424. if (ske_img.at<unsigned char>(r, c) == 0) { continue; }
  1425. double target_angle = atan2(double(c - center_pt.x), double(r - center_pt.y));
  1426. double dangle = intersection_angle(ref_angle, target_angle);
  1427. if (dangle > CV_PI / 36.0) { continue; }
  1428. double dist = std::powf((center_pt.x - c), 2) + std::powf((center_pt.y - r), 2);
  1429. dist = std::sqrtf(dist);
  1430. double loss = dist;
  1431. // d 1-内部点, 0-边缘点 -1-外部点
  1432. if (loss < min_loss) {
  1433. min_loss = loss;
  1434. min_x = c;
  1435. min_y = r;
  1436. }
  1437. }
  1438. }
  1439. grab_x = min_x;
  1440. grab_y = min_y;
  1441. grab_x += x1;
  1442. grab_y += y1;
  1443. }
  1444. bool CTeaSort::is_empty_feeder(
  1445. cv::Mat& raw_img,
  1446. double th/*=50.0*/
  1447. )
  1448. {
  1449. vector<Rect> drop_regions;
  1450. //生成grid
  1451. int grid_row = 16;
  1452. int grid_col = 16;
  1453. int block_height = int(raw_img.rows / (float)grid_row + 0.5);
  1454. int block_width = int(raw_img.cols / (float)grid_col + 0.5);
  1455. for (int r = 0; r < grid_row; ++r) {
  1456. for (int c = 0; c < grid_col; ++c) {
  1457. int x0 = c*block_width;
  1458. int y0 = r*block_height;
  1459. int x1 = (c + 1)*block_width;
  1460. int y1 = (r + 1)*block_height;
  1461. if (x0 < 0) { x0 = 0; }
  1462. if (y0 < 0) { y0 = 0; }
  1463. if (x1 > raw_img.cols) { x1 = raw_img.cols; }
  1464. if (y1 > raw_img.rows) { y1 = raw_img.rows; }
  1465. Rect r(x0, y0, x1 - x0, y1 - y0);
  1466. drop_regions.push_back(r);
  1467. }
  1468. }
  1469. //对原始灰度图进行分析
  1470. std::vector<double> gray_values;
  1471. for (auto rect : drop_regions) {
  1472. Mat roi = raw_img(rect);
  1473. cv::Scalar mu = cv::mean(roi);
  1474. gray_values.push_back(mu[0]);
  1475. }
  1476. bool is_empty = true;
  1477. double maxv = *max_element(gray_values.begin(), gray_values.end());
  1478. double minv = *min_element(gray_values.begin(), gray_values.end());
  1479. if((maxv-minv)>th){
  1480. is_empty = false;
  1481. }
  1482. if (is_empty) {
  1483. return is_empty;
  1484. }
  1485. //计算前景的百分比
  1486. cv::Mat bin_img;
  1487. double th_bin = cv::threshold(raw_img, bin_img, 255, 255, cv::THRESH_OTSU);
  1488. //统计bin_img中0个数
  1489. double fg_area = 0;
  1490. cv::Mat_<uchar>::iterator it = bin_img.begin<uchar>();
  1491. cv::Mat_<uchar>::iterator it_end = bin_img.end<uchar>();
  1492. for (; it != it_end; ++it) {
  1493. if ((*it)==0) {
  1494. fg_area += 1;
  1495. }
  1496. }
  1497. if (m_cp.image_show) {
  1498. imshow_wait("overall bin", bin_img);
  1499. }
  1500. double objects_ratio = fg_area / static_cast<double>(bin_img.cols * bin_img.rows);
  1501. if (objects_ratio <= 0.005) {
  1502. is_empty = true;
  1503. }
  1504. return is_empty;
  1505. }
  1506. double CTeaSort::singleten_ratio(
  1507. Bbox& box
  1508. )
  1509. {
  1510. //计算苗的方向,找到抓取的位置
  1511. float x3 = box.ppoint[4];
  1512. float y3 = box.ppoint[5];
  1513. float x5 = box.ppoint[8];
  1514. float y5 = box.ppoint[9];
  1515. double angle = atan2(x5 - x3, y5 - y3);
  1516. int padding_border = m_cp.offset_grab;
  1517. float grab_x = x3 + (float)padding_border * sin(angle);
  1518. float grab_y = y3 + (float)padding_border * cos(angle);
  1519. double singleten_ratio = 0.0;
  1520. if (grab_x < 0 || grab_y <0 || grab_x> m_raw_img.cols - 1 || grab_y >m_raw_img.rows - 1) {
  1521. return singleten_ratio;
  1522. }
  1523. int x1 = int(grab_x) - padding_border / 2;
  1524. int y1 = int(grab_y) - padding_border / 2;
  1525. int x2 = x1 + padding_border;
  1526. int y2 = y1 + padding_border;
  1527. x1 = x1 < 0 ? 0 : x1;
  1528. y1 = y1 < 0 ? 0 : y1;
  1529. x2 = x2 < m_raw_img.cols ? x2 : m_raw_img.cols - 1;
  1530. y2 = y2 < m_raw_img.rows ? y2 : m_raw_img.rows - 1;
  1531. cv::Rect r(x1, y1, x2 - x1, y2 - y1);
  1532. //debug
  1533. if (m_cp.image_show) {
  1534. cv::Mat tmp = m_raw_img.clone();
  1535. cv::Rect br(box.x1, box.y1, box.x2 - box.x1, box.y2 - box.y1);
  1536. cv::rectangle(tmp, br, cv::Scalar(0, 0, 200), 2);
  1537. cv::rectangle(tmp, r, cv::Scalar(0, 100, 0), 2);
  1538. imshow_wait("box", tmp);
  1539. }
  1540. cv::Mat roi = m_raw_gray_img(r).clone();
  1541. cv::Mat bin_img;
  1542. double th = cv::threshold(roi, bin_img, 255, 255, cv::THRESH_OTSU);
  1543. if (m_cp.image_show) {
  1544. imshow_wait("box bin_img", bin_img);
  1545. }
  1546. //统计bin_img中非0个数
  1547. double bg_area = 0;
  1548. cv::Mat_<uchar>::iterator it = bin_img.begin<uchar>();
  1549. cv::Mat_<uchar>::iterator it_end = bin_img.end<uchar>();
  1550. for (; it != it_end; ++it) {
  1551. if ((*it)>0) {
  1552. bg_area += 1;
  1553. }
  1554. }
  1555. singleten_ratio = bg_area / static_cast<double>(roi.cols * roi.rows);
  1556. return singleten_ratio;
  1557. ////计算图片中背景的占有率
  1558. ////padding
  1559. ////扩展box的范围,4个方向全部扩展
  1560. //int x1 = box.x1;
  1561. //int y1 = box.y1;
  1562. //int x2 = box.x2;
  1563. //int y2 = box.y2;
  1564. //int padding_border = m_cp.offset_grab;
  1565. //x1 -= padding_border;
  1566. //x1 = x1 < 0 ? 0 : x1;
  1567. //y1 -= padding_border;
  1568. //y1 = y1 < 0 ? 0 : y1;
  1569. //x2 += padding_border;
  1570. //x2 = x2 < m_raw_img.cols ? x2 : m_raw_img.cols - 1;
  1571. //y2 += padding_border;
  1572. //y2 = y2 < m_raw_img.rows ? y2 : m_raw_img.rows - 1;
  1573. //
  1574. //cv::Rect r(x1,y1,x2-x1,y2-y1);
  1575. //
  1576. //cv::Mat roi = m_raw_gray_img(r).clone();
  1577. //cv::Mat bin_img;
  1578. //double th = cv::threshold(roi, bin_img, 255, 255, cv::THRESH_OTSU);
  1579. //
  1580. ////统计bin_img中非0个数
  1581. //double bg_area = 0;
  1582. //cv::Mat_<uchar>::iterator it = bin_img.begin<uchar>();
  1583. //cv::Mat_<uchar>::iterator it_end = bin_img.end<uchar>();
  1584. //for(;it!=it_end;++it){
  1585. // if((*it)>0){
  1586. // bg_area+=1;
  1587. // }
  1588. //}
  1589. //double singleten_ratio = bg_area / static_cast<double>(roi.cols * roi.rows);
  1590. //return singleten_ratio;
  1591. }
  1592. double CTeaSort::direction_ratio(
  1593. Bbox& box
  1594. )
  1595. {
  1596. float x3 = box.ppoint[4];
  1597. float y3 = box.ppoint[5];
  1598. float x5 = box.ppoint[8];
  1599. float y5 = box.ppoint[9];
  1600. double angle = atan2(x5 - x3, y5 - y3);
  1601. double ratio = cos(angle);
  1602. if(ratio < 0) {
  1603. ratio *= -0.75;
  1604. }
  1605. return ratio;
  1606. }
  1607. void CTeaSort::calculate_overall_score_grab(
  1608. std::vector<Bbox> &boxes
  1609. )
  1610. {
  1611. for (auto&b : boxes) {
  1612. double single_ratio = singleten_ratio(b);
  1613. double dir_score = direction_ratio(b);
  1614. b.score_overall = single_ratio * dir_score;
  1615. }
  1616. sort(boxes.begin(), boxes.end(),
  1617. [=](const Bbox& left, const Bbox& right) {
  1618. return left.score_overall > right.score_overall;
  1619. });
  1620. }
  1621. }